福田の入試問題解説〜北海道大学2022年理系第4問〜円順列と確率 - 質問解決D.B.(データベース)

福田の入試問題解説〜北海道大学2022年理系第4問〜円順列と確率

問題文全文(内容文):
アルファベットのAと書かれた玉が1個、Dと書かれた玉が1個、Hと書かれ
た玉が1個、Iと書かれた玉が1個、Kと書かれた玉が2個、Oと書かれた玉が
2個ある。これら8個の玉を円形に並べる。
(1) 時計回りにHOKKAIDOと並ぶ確率を求めよ。
(2) 隣り合う子音が存在する確率を求めよ。ここで子音とは、D, H, K の3文字
(玉は4個)のことである。
(3) 隣り合う子音が存在するとき、それがKKだけである条件つき確率を求めよ。

2022北海道大学理系過去問
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
アルファベットのAと書かれた玉が1個、Dと書かれた玉が1個、Hと書かれ
た玉が1個、Iと書かれた玉が1個、Kと書かれた玉が2個、Oと書かれた玉が
2個ある。これら8個の玉を円形に並べる。
(1) 時計回りにHOKKAIDOと並ぶ確率を求めよ。
(2) 隣り合う子音が存在する確率を求めよ。ここで子音とは、D, H, K の3文字
(玉は4個)のことである。
(3) 隣り合う子音が存在するとき、それがKKだけである条件つき確率を求めよ。

2022北海道大学理系過去問
投稿日:2022.03.12

<関連動画>

【共通テスト】数学1A解説!!大問3【数学】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 3rd School
問題文全文(内容文):
数学1A 大問3解説動画です
この動画を見る 

福田の数学〜浜松医科大学2024医学部第2問〜日本シリーズ形式の確率とシグマに関する等式の証明

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
以下の問いに答えよ。なお、${}_n \mathrm{ C }_r$は二項係数を表す。
(1) AさんとBさんが将棋の対局を繰り返し行い、先に3回勝った方が優勝するものとする。AさんがBさんに1回の対局で勝つ確率は$p$であるとする。また各対局において引き分けはないものとする。このとき、Aさんが優勝する確率を$p$の式として表せ。
(2) (1) において $p = 0.75$ であるときに、Aさんが優勝する確率を、小数第3位を四捨五入して小数第2位まで求めよ。
(3) (1) において「先に3回」を「先に$N$回」 ($N$は2以上の自然数)にしたときの Aさんが優勝する確率を$p$と$N$の式として表せ。必要ならば和の記号$\sum$や二項係数${}_n \mathrm{ C }_r$を用いてもよい。
(4) すべての自然数$m$について
$\displaystyle \sum_{k=1}^m \displaystyle \frac{{}_{m+k} \mathrm{ C }_k}{2^k} = 2^m-1$
であることを証明せよ。
この動画を見る 

【高校数学】  数A-13  順列⑦ ・ グループ分け編

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①10人をA,Bの2部屋に入れる方法は何通り?
ただし、全部の人を1つの部屋に入れてもいい。

②10人を2つの組A,Bに分ける方法は何通り?

③10人を2つの組に分ける方法は何通り?
この動画を見る 

18東京都教員採用試験(数学:場合の数、数列)

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数列#数列とその和(等差・等比・階差・Σ)#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
1⃣-(2)
平面上の10コの円は、任意の2コの円も異なる2点で交わり、3コの円は1点で交わらないとき交点の総数を求めよ。
この動画を見る 

福田の数学〜青山学院大学2021年理工学部第1問〜さいころの目の最大最小の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#確率#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$1個のさいころを4回投げるとき、出た目の最小値をm、最大値をMとする。
(1)$m \geqq 2$となる確率は$\frac{\boxed{\ \ アイウ\ \ }}{\boxed{\ \ エオカキ\ \ }}$であり、
$m=1$となる確率は$\frac{\boxed{\ \ クケコ\ \ }}{\boxed{\ \ サシスセ\ \ }}$である。
(2)$m \geqq 2$かつ$M \leqq 5$となる確率は$\frac{\boxed{\ \ ソタ\ \ }}{\boxed{\ \ チツ\ \ }}$であり、$m \geqq 2$かつ$M=6$となる確率は
$\frac{\boxed{\ \ テト\ \ }}{\boxed{\ \ ナニヌ\ \ }}$である。

(3)$m=1$かつ$M=6$となる確率は$\frac{\boxed{\ \ ネノハ\ \ }}{\boxed{\ \ ヒフヘ\ \ }}$である。

2021青山学院大学理工学部過去問
この動画を見る 
PAGE TOP