【受験算数】平面図形:半径6cmの円周を12等分してあります。オレンジ色の部分の面積を求めよう。円周率は3.14とします。 - 質問解決D.B.(データベース)

【受験算数】平面図形:半径6cmの円周を12等分してあります。オレンジ色の部分の面積を求めよう。円周率は3.14とします。

問題文全文(内容文):
半径6cmの円周を12等分してあります。オレンジ色の部分の面積を求めよう。円 周率は3.14とします。
チャプター:

0:00 オープニング
0:05 問題文
0:15 図の注意点
0:20 同じ形の図形を探せ
1:31 求めたいのはピザ2枚分
1:46 名言

単元: #算数(中学受験)#平面図形#角度と面積
教材: #Gn#Gn5年算数#中学受験教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
半径6cmの円周を12等分してあります。オレンジ色の部分の面積を求めよう。円 周率は3.14とします。
投稿日:2021.06.30

<関連動画>

【受験算数】図形の移動(2):(基本❸)点が動いたあとの長さ【予習シリーズ算数・小5下】

アイキャッチ画像
単元: #算数(中学受験)#平面図形#図形の移動
教材: #予習シ#予習シ算数・小5下#中学受験教材#図形の移動
指導講師: 理数個別チャンネル
問題文全文(内容文):
右の図のように、長方形ABCDを直線lにそって、矢印の方向にすべらないように、アの位置からイの位置まで転がしました。円周率は3.14として、次の問に答えなさい。
(1)長方形ABCDがイの位置にあるとき、頂点Aが重なるのは、P、Q、R、Sのどれですか。記号で答えなさい。
(2)頂点Aが動いたあとの線の長さは何cmですか。
この動画を見る 

2023年豊島岡女子学園中学校算数「売買損益」

アイキャッチ画像
単元: #算数(中学受験)#過去問解説(学校別)#文章題#売買損益と食塩水#豊島岡女子学園中学
指導講師: 重吉
問題文全文(内容文):
【売買損益】
(1)仕入れ値を①とすると、5割増しの定価は、
  定価:①$\times (1+$____)=〇
  売り値は、定価の2割引きなので、
  売り値:$○ \times(1-$____)=〇$\times$ ____=〇
  「売り値-仕入れ値=利益」より
  〇-〇=____円
  〇=____円
  仕入れ値①=____円$\div$____=____円


(2)定価は、仕入れ値120円の5割増しなので、
  定価:____$\times (1+$____) = ____ $\times$ ____ = ____円
  よって、定価で1個売れた場合の利益は、
  ____円 - ____円 = ____円なので、定価で____個売れた分の利益は、
  ____円$\times$____個=____円
  全体の利益は、43,800円なので、2割引きの値段で売った分の利益は、
  ____ - ____ = ____円


定価____円の2割引きの売り値は、____円$\times(1-$____)= ____円$\times$____ = ____円
値引き価格で1個売れた場合の利益は、____円 - ____円 = ____円
よって、2割引きで売れた個数は、____ ÷ ____ = ____個
仕入れ数=定価で売れた分+値引き分=____個 + ____個 = ____個
この動画を見る 

8x=1ってみんなどう解く?

アイキャッチ画像
単元: #計算と数の性質#いろいろな計算
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
8x=1の解き方に関して解説していきます.
この動画を見る 

滋賀大 積分 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#学校別大学入試過去問解説(数学)#平面図形#角度と面積#数学(高校生)#数Ⅲ#滋賀大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'93滋賀大学過去問題
$y=\frac{1}{2}x^2$上に2点P,Q
線分PQは長さが2となるように動く、PQの中点のx座標をm
線分PQと放物線で囲まれる面積をmで表せ
この動画を見る 

【5分で得意分野!】連立方程式:福井県公立高校~全国入試問題解法

アイキャッチ画像
単元: #文章題#高校入試過去問(数学)#数学#福井県公立高校入試
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 福井県の公立高校

ある店では、鮭、昆布、明太子、梅の4種類のおにぎりを仕入れている。 昨日仕入れた個数は、鮭が600個で、昆布と明太子と梅の合計は150個で あった。
今日仕入れる個数は、鮭は昨日の個数の30%を減らすことにした。 また、昆布、明太子、梅は、それぞれ昨日の鮭の個数の5%、10%、 15%増やすことにした。
その結果、今日仕入れる個数は、昆布と明太子の合計が220個となり、 また、鮭と梅の合計は明太子の5倍となった。
昨日仕入れた昆布の個数を×個、明太子の個数をy個とするとき、 x. yについての連立方程式をつくり、その値を求めよ。
この動画を見る 
PAGE TOP