【数Ⅲ-152】定積分の置換積分法① - 質問解決D.B.(データベース)

【数Ⅲ-152】定積分の置換積分法①

問題文全文(内容文):
数Ⅲ(定積分の置換積分法①)

Q.次の定積分を求めよ。

①$\int_{-2}^1(2x+1)^4 dx$

➁$\int_{0}^3(5x+2)\sqrt{x+1} \ dx$

③$\int_{1}^2 \frac{x-1}{x^2-2x+2}\ dx$
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分の置換積分法①)

Q.次の定積分を求めよ。

①$\int_{-2}^1(2x+1)^4 dx$

➁$\int_{0}^3(5x+2)\sqrt{x+1} \ dx$

③$\int_{1}^2 \frac{x-1}{x^2-2x+2}\ dx$
投稿日:2019.08.07

<関連動画>

福田の数学〜明治大学2021年理工学部第1問(4)〜定積分で表された関数と変曲点

アイキャッチ画像
単元: #微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#大学入試解答速報#数学#明治大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(4)連続関数$f(x)$は区間$x \geqq 0$で正の値をとり、区間$x \gt 0$で微分可能
かつ$f'(x)\neq 0$であるとする。さらに、実数の定数aと関数$f(x)$が
$\int_0^x3t^2f(t)dt-(x^3+3)f(x)+\log f(x)=a (x \geqq 0)$
を満たすとする。このとき
$a=-\boxed{\ \ ヌ\ \ }-\log\boxed{\ \ ネ\ \ }$
である。また、曲線$y=f(x)\ (x \gt 0)$の変曲点のx座標をpとすると
$p^3=\frac{\boxed{\ \ ノ\ \ }}{\boxed{\ \ ハ\ \ }}$である。ただし、$\log x$は$x$の自然対数である。
この動画を見る 

大学入試問題#530「定石どおり」 信州大学(2000) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} e^{\sin\ x}\sin2x\ dx$

出典:2000年信州大学 入試問題
この動画を見る 

大学入試問題#540「これは平均点の調整すらならないような」 京都大学(2023) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{4} \sqrt{ x }\ log(x^2)\ dx$

出典:2023年京都大学 入試問題
この動画を見る 

大学入試問題#190 奈良県立医科大学(1987) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#奈良県立医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}\displaystyle \frac{x}{\sqrt{ 4-3x^2 }}\ dx$を計算せよ。

出典:1987年奈良県立医科大学 入試問題
この動画を見る 

大学入試問題#512「受験生の心は折れる」 浜松医科大学(2015) #区分求積法

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } (\displaystyle \frac{(3n^2+1^2)(3n^2+2^2)・・・(3n^2+n^2)}{(n^2+1^2)(n^2+2^2)・・・(n^2+n^2)})^{\frac{1}{n}}$

出典:2015年浜松医科大学 入試問題
この動画を見る 
PAGE TOP