大学入試問題#783「おもろいタイプ」 岡山県立大学中期(2011) #定積分 - 質問解決D.B.(データベース)

大学入試問題#783「おもろいタイプ」 岡山県立大学中期(2011) #定積分

問題文全文(内容文):
$f(x)=\displaystyle \int_{0}^{x} \displaystyle \frac{1}{\sqrt{ 1-t^2 }}\ dt(0 \leq x \leq 1)$において
$\displaystyle \int_{0}^{\frac{1}{2}} f(x)\ dx$を求めよ

出典:2011年青山県立大学中期 入試問題
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#岡山県立大学
指導講師: ますただ
問題文全文(内容文):
$f(x)=\displaystyle \int_{0}^{x} \displaystyle \frac{1}{\sqrt{ 1-t^2 }}\ dt(0 \leq x \leq 1)$において
$\displaystyle \int_{0}^{\frac{1}{2}} f(x)\ dx$を求めよ

出典:2011年青山県立大学中期 入試問題
投稿日:2024.04.02

<関連動画>

#筑波大学(2020) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#筑波大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}} \sin\theta\ \cos2\theta\ d\theta$

出典:2020年筑波大学
この動画を見る 

大学入試問題#909「基本に忠実に」 前橋工科大学(2023)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\sqrt{ 3 }} (x^7-3x^3)e-\displaystyle \frac{x^4}{4}$ $dx$

出典:2023年前橋工科大学
この動画を見る 

大学入試問題#892「数学はやっぱ根性」 #京都工芸繊維大学(2023)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$0 \leq \theta \leq \displaystyle \frac{\pi}{4}$とする
$f(\theta)=\displaystyle \int_{0}^{\frac{\pi}{4}} \displaystyle \frac{|\sin\theta-\sin x|}{\cos^2x} dx$

出典:2023年京都工芸繊維大学
この動画を見る 

大学入試問題#891「まだこのタイプの問題残ってた」 #信州大学(2023) #キングプロパティ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#信州大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-\pi}^{ \pi } \displaystyle \frac{1}{1+e^{-2\sin x}} dx$

出典:2023年信州大学
この動画を見る 

福田の数学〜慶應義塾大学2022年薬学部第1問(4)〜2次関数と積分の確率

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#確率#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(4)f(x)はxの2次関数である。$f(x)$は$x=-2$で極値をとり、$\int_{-3}^0f(x)dx=0$
を満たす。またxy平面上において、f(x)のグラフ$y=f(x)$はx軸と異なる2点で交わり、
$y=f(x)$とx軸で囲まれる部分の面積は$\frac{8}{3}$である。このとき$f(x)=\boxed{\ \ キ\ \ }$である。

2022慶應義塾大学薬学部過去問
この動画を見る 
PAGE TOP