06兵庫県教員採用試験(数学:3番 円と直線の関係) - 質問解決D.B.(データベース)

06兵庫県教員採用試験(数学:3番 円と直線の関係)

問題文全文(内容文):
円$c:x^2+y^2=1+m$と直線$l:y=-3x+m$が異なる2点$A,B$で交わる。
$m$は定数

(1)
$m$の値の範囲を求めよ

(2)
弦$AB$の長さの最大値とそのときの$m$の値を求めよ。
単元: #数Ⅱ#図形と方程式#円と方程式#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
円$c:x^2+y^2=1+m$と直線$l:y=-3x+m$が異なる2点$A,B$で交わる。
$m$は定数

(1)
$m$の値の範囲を求めよ

(2)
弦$AB$の長さの最大値とそのときの$m$の値を求めよ。
投稿日:2021.10.22

<関連動画>

とある奈良県教員採用試験の問題(数学:接線の数)

アイキャッチ画像
単元: #数A#数Ⅱ#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#微分法と積分法#接線と増減表・最大値・最小値#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
点$P(a,0)$を通り,
曲線$y=\dfrac{x}{\log_x}\ (x\gt 1)$に接する直線が
2本引けるように$a$の値の範囲を求めよ.
この動画を見る 

18滋賀県教員採用試験(数学:4番 微分方程式)

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{4}$
$f'(x)$:連続,$f(0)=1$
$g(x)=\displaystyle \int_{0}^{x}(x-t)f'(t)dt$
$f'(x)-1=g'(x)-g''(x)$
をみたす$f(x),g(x)$を求めよ.
この動画を見る 

07神奈川県教員採用試験(数学:7番 数列の極限)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
7⃣$a_1=\frac{1}{3}$ , $3^{n+1}a_{n+1}=3^na_n+1$
$\displaystyle \lim_{ n \to \infty } S_n$を求めよ
この動画を見る 

13滋賀県教員採用試験(数学:1-(1) 整数問題)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}-(1)$

$17x+13y=850$を満たす正の整数の
組$(x,y)$を全て求めよ.
この動画を見る 

07和歌山県教員採用試験(数学:3番 解の個数)

アイキャッチ画像
単元: #数Ⅰ#数と式#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$x+2=ae^x$の実数解の個数を調べよ。
$a$は定数とする。
この動画を見る 
PAGE TOP