福田の数学〜東京工業大学2022年理系第1問〜2次方程式の解の存在範囲 - 質問解決D.B.(データベース)

福田の数学〜東京工業大学2022年理系第1問〜2次方程式の解の存在範囲

問題文全文(内容文):
a,bを実数とし、$f(z)=z^2+az+b$ とする。a,bが
$|a| \leqq 1,  |b| \leqq 1$
を満たしながら動くとき、$f(z)=0$を満たす複素数zが取りうる値の範囲を
複素平面上に図示せよ。

2022東京工業大学理系過去問
単元: #大学入試過去問(数学)#2次関数#複素数平面#2次方程式と2次不等式#図形への応用#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
a,bを実数とし、$f(z)=z^2+az+b$ とする。a,bが
$|a| \leqq 1,  |b| \leqq 1$
を満たしながら動くとき、$f(z)=0$を満たす複素数zが取りうる値の範囲を
複素平面上に図示せよ。

2022東京工業大学理系過去問
投稿日:2022.03.27

<関連動画>

ルートが入っている二次方程式 広尾学園

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
広尾学園
方程式を解け
$x^{2}-\sqrt{ 2 }(1+\sqrt{ 5 })x+2\sqrt{ 5 }=0$
この動画を見る 

ざ・息抜き

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#2次関数#2次方程式と2次不等式#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \sqrt{2022}x^{\log_{2022}x}=x^2$の解の積の下3桁を求めよ.
この動画を見る 

【数Ⅰ】【2次関数】2次関数 解の個数、連立 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#2次関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$m$は定数とする。放物線$y=x^2+(m+3)x+3m+4$と$x$軸の共有点の個数を調べよ。

次の2次不等式の解がすべての実数であるとき、定数$m$の値の範囲を求めよ。
(1)$x^2-mx+1>0$(2)$x^2+mx+2m\leqq0$

次の連立不等式を満たす整数$x$の値を全て求めよ。
\begin{eqnarray}
(1)\left\{
\begin{array}{l}
2x^2-x-3<0\\
3x^2-10x+3<0
\end{array}
\right.
(2)\left\{
\begin{array}{l}
x^2+2x>1\\
x^2-x\leqq6
\end{array}
\right.
\end{eqnarray}
この動画を見る 

2次方程式の応用 (高校数学)

アイキャッチ画像
単元: #2次関数#2次方程式と2次不等式#2次関数とグラフ
指導講師: 数学を数楽に
問題文全文(内容文):
2次方程式 $(x-l) (x-2) -(x-k) =0$ の解を $\alpha, \beta (\alpha<\beta)$ とするとき、$\alpha, \beta, 1, 2, k$ を小さい順に並べよ(ただし、$1<k<2$)
この動画を見る 

福田の数学〜神戸大学2023年理系第2問〜2次方程式の解の存在範囲

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#2次方程式と2次不等式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ a,bを実数とする。整式$f(x)$=$x^2$+$ax$+$b$ で定める。以下の問いに答えよ。ただし、2次方程式の重解は2つと数える。
(1)2次方程式$f(x)$=0が異なる2つの正の解をもつためのaとbが満たすべき必要十分条件を求めよ。
(2)2次方程式$f(x)$=0の2つの解の実部が共に0より小さくなるような点(a, b)の存在する範囲をab平面上に図示せよ。
(3)2次方程式$f(x)$=0の2つの解の実部が共に-1より大きく、0より小さくなるような点(a, b)の存在する範囲をab平面上に図示せよ。

2023神戸大学理系過去問
この動画を見る 
PAGE TOP