何問できた? - 質問解決D.B.(データベース)

何問できた?

問題文全文(内容文):
展開の問題
①$(x+2)(x+3)$

②$(3x+5)(3x-2)$

③$(x-2)^2$

④$\require{physics} \qty( 3x+\frac{1}{5} ) \require{physics} \qty( 3x-\frac{1}{5} )$

⑤$(t+3)^2$
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
展開の問題
①$(x+2)(x+3)$

②$(3x+5)(3x-2)$

③$(x-2)^2$

④$\require{physics} \qty( 3x+\frac{1}{5} ) \require{physics} \qty( 3x-\frac{1}{5} )$

⑤$(t+3)^2$
投稿日:2024.04.30

<関連動画>

福田の数学〜青山学院大学2022年理工学部第2問〜平面ベクトルの直交と絶対値の最小

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#平面上のベクトル#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#数学(高校生)#数C#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
四面体OABCは
$OA=OB=2,\ \ \ OC=3,\ \ \ AB=1,\ \ \ BC=4$
を満たすとする。また、三角形ABCの重心をGとするとき、$OG=\sqrt2$である。
(1)$\overrightarrow{ OA }・\overrightarrow{ OB }=\frac{\boxed{ア}}{\boxed{イ}},$
$\ \ \ \overrightarrow{ OA }・\overrightarrow{ OC}=\frac{\boxed{ウエ}}{\boxed{オ}}$
(2)$\ \overrightarrow{ OG }$と$\overrightarrow{ OA }+k\overrightarrow{ OB }$が垂直であるのは$k=\boxed{カキ}$のときである。
(3)$t$を実数とする。
$|t\overrightarrow{ OA }-2t\overrightarrow{ OB }+\overrightarrow{ OC }|$
の最小値は$\frac{\sqrt{\boxed{クケコ}}}{\boxed{サ}}$であり、
そのときのtの値は$\frac{\boxed{シス}}{\boxed{セ}}$である。

2022青山学院大学理工学部過去問
この動画を見る 

「二次関数の決定」全パターン【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の条件を満たす2次関数を求めよ。
(1)頂点が$(1,3)$で、点$(2,5)$を通る。
(2)軸が直線$x=2$で、2点$(0,-1),(-1,-6)$を通る。
(3)3点$(1,6),(-2,-9),(4,3)$を通る。
(4)3点$(-2,0),(3,0),(1,-12)$を通る。
(5)$y=2x^2$を平行移動したグラフで、点$(2,3)$を通り、頂点が直線$y=2x-1$上にある。
この動画を見る 

【高校数学】  数Ⅰ-52  特殊な最大・最小①

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎$x \geqq 0 , y \leqq 0,x-2y=3$のとき、$x^2+y^2$の最大値、最小値を求めよう。
この動画を見る 

福田のわかった数学〜高校1年生043〜三角比の相互関係(2)

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 三角比の相互関係(2)
$\sin\theta+\cos\theta=\frac{\sqrt3-1}{2} (90° \lt \theta \lt 180°)$のとき
$\sin\theta\cos\theta,\sin^3\theta+\cos^3\theta,\sin\theta-\cos\theta,$
$\tan\theta+\frac{1}{\tan\theta},\tan^2\theta+\frac{1}{\tan^2\theta}$の値を求めよ。
この動画を見る 

平均値より中央値の話

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
平均値より中央値の話
この動画を見る 
PAGE TOP