【中学数学】1次関数:関数決定マスターへの道 5発目! 切片編 - 質問解決D.B.(データベース)

【中学数学】1次関数:関数決定マスターへの道 5発目! 切片編

問題文全文(内容文):
次の条件を満たす1次関数を求めよ。 切片が3で、x=5のときy=7
単元: #数学(中学生)#中2数学#1次関数
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件を満たす1次関数を求めよ。 切片が3で、x=5のときy=7
投稿日:2021.04.20

<関連動画>

【ケイスウに小数、分数…!】連立方程式:八雲学園高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
次の連立方程式を解きなさい。

0.3x + y/2 =1.7
-x + (4x-y)/3 =1
この動画を見る 

【テスト対策・中1】1章-5

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の計算の①~⑥の部分で使われている計算法則を書きなさい.

$173+49+127=49+173+127=49+(173+127)=49+300=349$

$19 \times 131 - 19 \times 31 = 19 \times (131 - 31) = 19 \times 100 =1900$

$25 \times 72 \times 4 =72 \times 25 \times 4=72 \times (25 \times 4)=72 \times 100 =7200$

$12 \times \left(-\dfrac{1}{4}+\dfrac{7}{3}\right)-12\times \left(-\dfrac{1}{4}\right)+12\times \dfrac{7}{3} = -3 + 28 =25$

①~⑥は動画内参照
この動画を見る 

【中学数学】連立方程式:基礎の基礎から解説!その6 係数を揃えよう

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
教材: #新中学問題集#新中学問題集(数学)2標準編#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の連立方程式を解け。
5x-2y=3
2x-3y=21
この動画を見る 

【高校受験対策/数学】死守55

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#空間図形#2次関数#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守55

①$(-3)^2+2 \times (-5)$を計算しなさい。

②$\frac{4x-3}{2}\times\frac{6x-7}{5}$を計算しなさい。

③$(-4xy)^2×(-3x)$を計算しなさい。

④連立方程式を解きなさい。
$4x-3y=-7$
$5x+9y=-13$

⑤$5\sqrt{6}+2\sqrt{24}-\frac{6\sqrt{3}}{\sqrt{2}}$を計算しなさい。

⑥二次方程式$(x+4)(x-6)=6x-39$を解きなさい。

②関数$y=ax^2$について、$x$の値が$-5$から$-3$まで増加したときの変化の割合が$2$であるとき、$a$の値を求めなさい。

⑧底面の半径が$5$ cm、高さが$6$ cmの円すいの体積を求めなさい。 ただし円周率は$\pi$とする。

⑨右の図1のように、三角形$ABC$の$\angle B$の二等分線と$\angle C$の外角$\angle ACD$の二等分線の交点を$E$とする。
$\angle BAC$の大きさが$40°$のとき、$\angle BEC$の大きさを求めなさい。

⑩右の図2で、$\angle APB=120°$のひし形$AQBP$を1つ、 定規とコンパスを用いて作図しなさい。 なお作図に用いた線は消さずに残して おきなさい。
この動画を見る 

【短時間でマスター!!】連立方程式 代入法[現役講師解説、中学2年、数学〕

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 3rd School
問題文全文(内容文):

$\begin{eqnarray}
\left\{
\begin{array}{l}
3x-2y=7 \\
x=y+4
\end{array}
\right.
\end{eqnarray}$



$\begin{eqnarray}
\left\{
\begin{array}{l}
2x+3y=13 \\
y=2x-1
\end{array}
\right.
\end{eqnarray}$
この動画を見る 
PAGE TOP