福田の数学〜神戸大学2023年理系第5問〜媒介変数表示で表された曲線と面積 - 質問解決D.B.(データベース)

福田の数学〜神戸大学2023年理系第5問〜媒介変数表示で表された曲線と面積

問題文全文(内容文):
$\Large\boxed{5}$ 媒介変数表示
$x$=$\sin t$, $y$=$\cos(t-\frac{\pi}{6})\sin t$ (0≦$t$≦$\pi$)
で表される曲線をCとする。以下の問いに答えよ。
(1)$\frac{dx}{dt}$=0 または $\frac{dy}{dt}$=0 となる$t$の値を求めよ。
(2)Cの概形を$xy$平面上に描け。
(3)Cの$y$≦0 の部分と$x$軸で囲まれた図形の面積を求めよ。

2023神戸大学理系過去問
単元: #大学入試過去問(数学)#平面上の曲線#微分とその応用#積分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#神戸大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 媒介変数表示
$x$=$\sin t$, $y$=$\cos(t-\frac{\pi}{6})\sin t$ (0≦$t$≦$\pi$)
で表される曲線をCとする。以下の問いに答えよ。
(1)$\frac{dx}{dt}$=0 または $\frac{dy}{dt}$=0 となる$t$の値を求めよ。
(2)Cの概形を$xy$平面上に描け。
(3)Cの$y$≦0 の部分と$x$軸で囲まれた図形の面積を求めよ。

2023神戸大学理系過去問
投稿日:2023.06.24

<関連動画>

福田の数学〜明治大学2022年全学部統一入試理系第3問〜2次曲線の極方程式と置換積分

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#微分とその応用#積分とその応用#2次曲線#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#明治大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}} \ a,\ hを正の実数とする。座標平面において、原点Oからの距離が、\hspace{110pt}\\
直線x=hからの距離のa倍であるような点Pの軌跡を考える。点Pの座標を(x,\ y)とする\\
と、x,\ y\ は次の方程式を満たす。\\
(1-\boxed{\ \ ア\ \ })\ x^2+2\ \boxed{\ \ イ\ \ }\ x+y^2=\boxed{\ \ ウ\ \ }\ \ \ \ \ ...(1) \\
\\
\boxed{\ \ ア\ \ },\ \boxed{\ \ イ\ \ },\ \boxed{\ \ ウ\ \ }\ の解答群\\
⓪a^2\ \ \ ①h^2\ \ \ ②a^3\ \ \ ③a^2h\ \ \ ④ah^2\ \ \ \\
⑤h^3\ \ \ ⑥a^4\ \ \ ⑦a^2h^2\ \ \ ⑧ah^3\ \ \ ⑨h^4\ \ \ \\
\\
次に、座標平面の原点Oを極、x軸の正の部分を始線とする極座標を考える。\\
点Pの極座標を(r\ θ)とする。r \leqq hを満たすとき、点Pの直交座標(x,\ y)をa,\ h,\ θ\\
を用いて表すと\\
(x,\ y)=(\frac{\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }}\ \cos θ,\ \frac{\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }}\ \sin θ)\ \ \ \ \ ...(2) \\
\\
\boxed{\ \ エ\ \ },\ \boxed{\ \ オ\ \ }\ の解答群\\
⓪h\ \ \ ①ah\ \ \ ②h^2\ \ \ ③ah^2\ \ \ ④1+a\cos θ\ \ \ \\
⑤1+a\sin θ\ \ \ ⑥a\cos θ-1\ \ \ ⑦a\sin θ-1\ \ \ ⑧1-a\cos θ\ \ \ ⑨1-a\sin θ\ \ \ \\
\\
(1)から、a=\boxed{\ \ カ\ \ }のとき、点Pの軌跡は放物線\ x=\boxed{\ \ キ\ \ }\ y^2+\boxed{\ \ ク\ \ }となる。\\
この放物線とy軸で囲まれた図形の面積Sは\\
S=2\int_0^{\boxed{\ \ ケ\ \ }}xdy=2\int_0^{\boxed{\ \ ケ\ \ }}(\boxed{\ \ キ\ \ }\ y^2+\boxed{\ \ ク\ \ })dy=\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\ h^2\\
である。したがって、(2)を利用すれば、置換積分法により次の等式が成り立つことが分かる。\\
\int_0^{\frac{\pi}{2}}\frac{\cos θ}{(1+\cos θ)^2}dθ=\frac{\boxed{\ \ シ\ \ }}{\boxed{\ \ ス\ \ }}\\
\\
\boxed{\ \ キ\ \ },\ \boxed{\ \ ク\ \ },\ \boxed{\ \ ケ\ \ }\ の解答群\\
⓪h\ \ \ ①2h\ \ \ ②\frac{h}{2}\ \ \ ③-\frac{h}{2}\ \ \ ④\frac{1}{h}\ \ \ \\
⑤-\frac{1}{h}\ \ \ ⑥\frac{1}{2h}\ \ \ ⑦-\frac{1}{2h}\ \ \ ⑧h^2\ \ \ ⑨-h^2\ \ \
\end{eqnarray}

2022明治大学全統理系過去問
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年医学部第3問〜内サイクロイドと極方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ (1)座標平面上の点P(x,y)を、点T(s,t)を中心として半時計周りに角\alphaだけ\\
回転させるときに、点Pが点P'(x',y')に移るとする。x'とy'をx,y,s,t,\alpha\\
の式で表すとx'=\boxed{\ \ ア\ \ }, y'=\boxed{\ \ イ\ \ }となる。\\
(2)aを正の実数とする。原点O(0,0)とする半径aの円Cに、半径\frac{a}{2}で原点O\\
を通る円Kを点A(a,0)において内接させる。この円Kを円Cに沿って\\
滑らないように転がす。ただし、KとCの接点がC上を半時計回りに動くようにする。\\
そして、接点の座標がはじめて(a\cos\beta,a\sin\beta)(0 \leqq \beta \leqq 2\pi)となるようにする。\\
円Kに対するこの操作は次の2段階の操作を続けて行うことと同等である。\\
(\textrm{i})点B(\frac{a}{2},0)を中心として、円Kを\boxed{\ \ ウ\ \ }\ に角\boxed{\ \ エ\ \ }\ だけ回転させる。\\
(\textrm{ii})原点Oを中心として、円Kを\boxed{\ \ オ\ \ }\ に角\boxed{\ \ カ\ \ }\ だけ回転させる。\\
\\
\boxed{\ \ ウ\ \ },\boxed{\ \ エ\ \ },\boxed{\ \ オ\ \ },\boxed{\ \ カ\ \ }の選択肢\\
時計回り,反時計回り,\beta,2\beta,\frac{1}{2}\beta\\
\\
\\
(3)円Kが点Aにおいて円Cに内接しているとき、Kの内部に固定された点Q(b,0)\\
(ただし、0 \lt b \lt a)をとる。円Kを、Cとの接点がC上を一周するまで(2)に述べた\\
やり方でCに沿って転がすとき、点Qが動いてできる曲線をS_1とする。S_1上の\\
点の座標を(x,y)として、S_1の方程式をx,yを用いて書くと\boxed{\ \ キ\ \ }となる。\\
\\
(4)円Kが点Aにおいて円Cに内接しているとき、円Cに固定された点R(0,a)をとる。\\
今度は円Kを固定して、円Cの方をKに接した状態で滑らないようにKに沿って転がす。\\
2つの円の接点が円Kを\boxed{\ \ ク\ \ }回転したとき、点Rははじめてもとの位置\\
(0,a)に戻る。Rが描く曲線をS_2とする。原点Oを極とし、x軸の正の部分を\\
始線とする極座標(r,\theta)によるS_2の極方程式はr=\boxed{\ \ ケ\ \ }である。\\
ただしr,\thetaはそれぞれS_2上の点の原点からの距離、および偏角である。
\end{eqnarray}

2022慶應義塾大学医学部過去問
この動画を見る 

【数Ⅲ】式と曲線:極方程式の直線のなす角

アイキャッチ画像
単元: #平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
教材: #サクシード#サクシード数学Ⅲ#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
2直線
$r(\sqrt3\cos\theta+\sin\theta)=4$
$r(\sqrt3\cos\theta-\sin\theta)=2$
の交点の極座標を求めよ。またこの2直線のなす鋭角も求めよ。
(出典 数研出版サクシード数学Ⅲ)
この動画を見る 

福田のわかった数学〜高校3年生理系070〜接線(2)媒介変数表示の接線

アイキャッチ画像
単元: #平面上の曲線#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#媒介変数表示と極座標#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 接線(2) 媒介変数表示の接線\\
\left\{
\begin{array}{1}
x=\theta-\sin\theta\\
y=1-\cos\theta
\end{array}
\right.             \\
\\
で表される曲線の\theta=\frac{3\pi}{2}のときの点Pにおける接線を求めよ。
\end{eqnarray}
この動画を見る 

福田の1.5倍速演習〜合格する重要問題004〜東北大学2015年理系数学第1問

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#2次曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#東北大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ \ xy平面において、次の式が表す曲線をCとする。\hspace{100pt}\\
x^2+4y^2=1,\ \ \ \ x \gt 0, \ \ \ \ y \gt 0\hspace{100pt}\\
PをC上の点とする。PでCに接する直線をlとし、Pを通りlと垂直な直線を\\
mとして、x軸とy軸とmで囲まれてできる三角形の面積をSとする。PがC\\
上の点全体をうごくとき、Sの最大値とその時のPの座標を求めよ。\hspace{30pt}
\end{eqnarray}

2015東北大学理系過去問
この動画を見る 
PAGE TOP