【高校数学】 数Ⅰ-98 三角形の内角の二等分線 - 質問解決D.B.(データベース)

【高校数学】  数Ⅰ-98  三角形の内角の二等分線

問題文全文(内容文):
◎$\angle A=60°, AB=4.AC=3$である△ABCの$\angle A$の二等分線が辺BCと交わる点をDとするとき、線分ADの長さを求めよう。
単元: #数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎$\angle A=60°, AB=4.AC=3$である△ABCの$\angle A$の二等分線が辺BCと交わる点をDとするとき、線分ADの長さを求めよう。
投稿日:2014.11.26

<関連動画>

福田の数学〜東京理科大学2023年創域理工学部第1問(1)〜確率の基本性質

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)(a)1個のさいころを4回続けて投げるとき、4回とも同じ目が出る確率は
$\displaystyle\frac{1}{\boxed{\ \ アイウ\ \ }}$であり、3, 4, 5, 6の目がそれぞれ1回ずつ出る確率は$\displaystyle\frac{1}{\boxed{\ \ エオ\ \ }}$である。
(b)1個のさいころを4回続けて投げて、出た目を順に左から並べて4桁の整数Nを作る。例えば、1回目に2、2回目に6、3回目に1、4回目に2の目がでた場合はN=2612である。Nが偶数となる確率は$\displaystyle\frac{1}{\boxed{\ \ カ\ \ }}$であり、N≧2023 となる確率は$\displaystyle\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}$であり、N≧5555 となる確率は$\displaystyle\frac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシス\ \ }}$である。
この動画を見る 

整数問題 中学生には難しい 滝高校

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{a^2-12}{a}$が自然数となる整数aの値をすべて求めよ。$(a \neq 0)$

滝高等学校
この動画を見る 

【高校数学】反復試行の確率例題~一緒に解いてもやもや解決~ 2-6.5【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
白玉3個、赤玉2個が入った袋から玉を1個取り出し、色を調べてから
元に戻すことを5回行うとき、次の確率を求めよ。
(a) 白玉をちょうど3回取り出す確率
(b) 5回目に3度目の赤玉を取り出す確率
(c) 5回目に初めて白玉が出る確率

-----------------

2⃣
数直線上を動く点Pが原点にある。1個のさいころを投げて、偶数の目が
出たら正の方向に1、奇数の目が出たら負の方向に1だけPを動かす。
さいころを8回投げたときのPの座標が2である確率を求めよ。

-----------------

3⃣
AとBがテニスの試合を行うとき、各ゲームでA Bが勝つ確率はそれぞれ
$\displaystyle \frac{2}{3} , \displaystyle \frac{1}{3}$あるとする。
3ゲーム先に勝った方が試合の勝者になるとき、Aが勝者になる確率を求めよ。
この動画を見る 

数学オリンピック予選

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1^{2001}+2^{2001}+3^{2001}+…+2000^{2001}+$
$2001^{2001}$を13で割った余りを求めよ。

出典:2001年数学オリンピック 予選問題
この動画を見る 

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n^8-6n^4+10$が素数となる整数$n$をすべて求めよ.
この動画を見る 
PAGE TOP