【高校数学】 数Ⅰ-98 三角形の内角の二等分線 - 質問解決D.B.(データベース)

【高校数学】  数Ⅰ-98  三角形の内角の二等分線

問題文全文(内容文):
◎$\angle A=60°, AB=4.AC=3$である△ABCの$\angle A$の二等分線が辺BCと交わる点をDとするとき、線分ADの長さを求めよう。
単元: #数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎$\angle A=60°, AB=4.AC=3$である△ABCの$\angle A$の二等分線が辺BCと交わる点をDとするとき、線分ADの長さを求めよう。
投稿日:2014.11.26

<関連動画>

山梨大(医)整数問題 解説:ヨビノリたくみ Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$は2以上の整数
$log_{a}b$が有理数ならば、自然数$m,n$と2以上の整数が存在して、$a=c^m,b=c^n$と表せることを示せ

出典:山梨大学 過去問
この動画を見る 

整数問題 一橋大(類)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
すべての自然数$n$について$7^n+an+b$が$36$の倍数となる$36$以下の自然数$a,b$を求めよ.

一橋大(類)過去問
この動画を見る 

共通テスト2021年数学詳しい解説〜共通テスト2021年IA第5問〜平面幾何

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#三角形の辺の比(内分・外分・二等分線)#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第5問}$
$\triangle ABC$において、$AB=3$, $BC=4$, $AC=5$とする。
$\angle BAC$の二等分線と辺$BC$との交点を$D$とすると
$BD=\displaystyle \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$, $AD=\displaystyle \frac{\boxed{\ \ ウ\ \ }\sqrt{\boxed{\ \ エ\ \ }}}{\boxed{\ \ オ\ \ }}$
である。
また、$\angle BAC$の二等分線と$\triangle ABC$の外接円$O$との交点で点$A$とは異なる
点を$E$とする。$\triangle AEC$に着目すると
$AE=\boxed{\ \ カ\ \ }\sqrt{\boxed{\ \ キ\ \ }}$
である。
$\triangle ABC$の2辺$AB$と$AC$の両方に接し、外接円$O$に内接する円の中心を
$P$とする。円$P$の半径を$r$とする。さらに、円$P$と外接円$O$との接点を
$F$とし、直線$PF$と外接円$O$との交点で点$F$とは異なる点を$G$とする。
このとき
$AP=\sqrt{\boxed{\ \ ク\ \ }}\ r$, $PG=\boxed{\ \ ケ\ \ }-r$
と表せる。したがって、方べきの定理により$r=\displaystyle \frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}$である。

$\triangle ABC$の内心を$Q$とする。内接円$Q$の半径は$\boxed{\ \ シ\ \ }$で、$AQ=\sqrt{\boxed{\ \ ス\ \ }}$
である。また、円$P$と辺$AB$との接点を$H$とすると、$AH=\displaystyle \frac{\boxed{\ \ セ\ \ }}{\boxed{\ \ ソ\ \ }}$である。
以上から、点$H$に関する次の$(\textrm{a}),(\textrm{b})$の正誤の組合せとして正しいもの
は$\boxed{\boxed{\ \ タ\ \ }}$である。


$(\textrm{a})$点$H$は3点$B,D,Q$を通る円の周上にある。
$(\textrm{b})$点$H$は3点$B,E,Q$を通る円の周上にある。

$\boxed{\boxed{\ \ タ\ \ }}$の解答群
(※選択肢は動画参照)

2021共通テスト過去問
この動画を見る 

日本女子大 ビンゴ!の確率(ついてる人&ついてない人) Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#日本女子大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
日本女子大学過去問題
5×5マスの方眼紙の各マスに1~25の数字をでたらめに配置して1から順に穴を開ける
(1)1~5の番号に穴を開けたとき、穴が縦又は横に5つ並ぶ確率
(2)21まで開けたとき初めて穴が縦又は横に5つ並ぶ確率
この動画を見る 

福田の数学〜明治大学2024全学部統一IⅡAB第1問(5)〜要素の個数の数え上げ

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$(5)正の整数のうち、3の場椅子であるか、または10進法で表した時に3を含む$$ような数の集合を考える。この集合の要素を小さい順に並べた数列を考える。$$このとき、999は第\fcolorbox{black}{ White }{ニ}項である。$
$ニの解答群$
$(0)\ 333\ (1)\ 396\ (2)\ 414\ (3)\ 459\ (4)\ 495$
$(5)\ 513\ (6)\ 558\ (7)\ 612\ (8)\ 693\ (9)\ 756$
この動画を見る 
PAGE TOP