問題文全文(内容文):
${\Large\boxed{1}}$ 放物線$y=x^2$上の点$P$と、直線$x-2y-4=0$上の点との距離の最小値を
求めよ。また、そのときの点$P$の座標を求めよ。
${\Large\boxed{2}}$ $O(0,0),A(a,b),B(c,d)$とする。
(1)$\triangle OAB$の面積を$S$とする。$S=\displaystyle \frac{1}{2}|ad-bc|$であることを証明せよ。
(2)(1)を利用して、$A(3,5),B(5,2),C(1,1)$に対し、$\triangle ABC$の面積を求めよ。
${\Large\boxed{1}}$ 放物線$y=x^2$上の点$P$と、直線$x-2y-4=0$上の点との距離の最小値を
求めよ。また、そのときの点$P$の座標を求めよ。
${\Large\boxed{2}}$ $O(0,0),A(a,b),B(c,d)$とする。
(1)$\triangle OAB$の面積を$S$とする。$S=\displaystyle \frac{1}{2}|ad-bc|$であることを証明せよ。
(2)(1)を利用して、$A(3,5),B(5,2),C(1,1)$に対し、$\triangle ABC$の面積を求めよ。
単元:
#数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 放物線$y=x^2$上の点$P$と、直線$x-2y-4=0$上の点との距離の最小値を
求めよ。また、そのときの点$P$の座標を求めよ。
${\Large\boxed{2}}$ $O(0,0),A(a,b),B(c,d)$とする。
(1)$\triangle OAB$の面積を$S$とする。$S=\displaystyle \frac{1}{2}|ad-bc|$であることを証明せよ。
(2)(1)を利用して、$A(3,5),B(5,2),C(1,1)$に対し、$\triangle ABC$の面積を求めよ。
${\Large\boxed{1}}$ 放物線$y=x^2$上の点$P$と、直線$x-2y-4=0$上の点との距離の最小値を
求めよ。また、そのときの点$P$の座標を求めよ。
${\Large\boxed{2}}$ $O(0,0),A(a,b),B(c,d)$とする。
(1)$\triangle OAB$の面積を$S$とする。$S=\displaystyle \frac{1}{2}|ad-bc|$であることを証明せよ。
(2)(1)を利用して、$A(3,5),B(5,2),C(1,1)$に対し、$\triangle ABC$の面積を求めよ。
投稿日:2018.07.23