【数学】数学オリンピックの組み合わせ論の問題、見方を教えます! - 質問解決D.B.(データベース)

【数学】数学オリンピックの組み合わせ論の問題、見方を教えます!

問題文全文(内容文):
1998×2002マスのマス目があり、黒と白の市松模様に塗られている。マス目に0か1を書き加えたところ、各行・各列に1が書かれた個数は奇数個であった。このとき白マスの1は偶数個あることを示せ。
チャプター:

00:00問題
00:15問題の説明・考え方について
01:19解答

単元: #数学検定・数学甲子園・数学オリンピック等#数学オリンピック
指導講師: 理数個別チャンネル
問題文全文(内容文):
1998×2002マスのマス目があり、黒と白の市松模様に塗られている。マス目に0か1を書き加えたところ、各行・各列に1が書かれた個数は奇数個であった。このとき白マスの1は偶数個あることを示せ。
投稿日:2022.04.08

<関連動画>

数学オリンピック ベラルーシ 整数

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学オリンピック
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b,c$は自然数であり,$P$は素数である.
$a+b=b(a-c)$,$c+1=P^2$なら$a+b$か$ab$は平方数であることを示せ.
この動画を見る 

数学オリンピック予選 整数問題

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$自然数 $a \lt b$
$a$と$b$は互いに素
$a \times b=29!$を満たす$(a,b)$の組はいくつか求めよ

出典:数学オリンピック 予選問題
この動画を見る 

数学オリンピック トルコ 標準レベル

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学オリンピック
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y$は整数であり,$P$は素数である.
$x^2-3xy+P^2y^2=12P$
$(x,y,P)$の組をすべて求めよ.

数学オリンピックトルコ過去問

この動画を見る 

福田のおもしろ数学035〜2001年数学オリンピックの名作〜13で割った余りを求める

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学オリンピック
指導講師: 福田次郎
問題文全文(内容文):
$1^{2001}+2^{2001}+3^{2001}+…+2001^{2001}$を13で割ったあまりを求めよ

2001数学オリンピック過去問
この動画を見る 

ギリシア 数学オリンピック 簡単

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学オリンピック
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3・2^x+4-n^2$
$x,n$は自然数とする.$x$の値を求めよ.
この動画を見る 
PAGE TOP