福田の数学〜慶應義塾大学2024総合政策学部第4問〜中がくり抜かれた球の体積 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2024総合政策学部第4問〜中がくり抜かれた球の体積

問題文全文(内容文):
$\boxed{4}$点Oを中心とする半径$2$の球から点を中心とする半径$r(0 \lt r\lt 2)$の球をくり抜いてできた立体$V$がある。いま、点Oからおろした垂線の長さが$x(0 \lt x\lt 2)$である平面$P$で立体$V$を切り、2つの立体に分ける。2つの立体のうち、体積の小さい方を$V_{ 1 }$、大きい方を$V_{2}$とする。

(1)平面$P$による立体$V$の切り口の面積が$π(2-r)^2$であるとき、$x=\sqrt{ \boxed{ アイ }r^2+\boxed{ ウエ } }$である。
(2)$(0 \lt x\lt r)$のとき、$V_{1}$の体積は$(r^2+\boxed{ オカ})πx+\frac{\boxed{キク}}{\boxed{ケコ}}πr^3+\frac{\boxed{サシ}}{\boxed{スセ}}π$であり、$r \leqq x\lt2$のとき、$V_{1}$の体積は$\frac{\boxed{ソタ}}{\boxed{チツ}}πr^3+\boxed{テト}πx+\frac{\boxed{ナニ}}{\boxed{ヌネ}}π$である。
(3)$x=r$において、$V_{1}$の体積と$V_{2}$の体積の比が$1:3$になるとき、$r=\boxed{ノハ}+\sqrt{\boxed{ヒフ}}$である。また、$x=\frac{2}{3}r$において$V_{1}$の体積と$V_{2}$の体積の比が$1:3$になるとき、$r=\boxed{ヘホ}+\sqrt{\boxed{マミ}}$である。
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{4}$点Oを中心とする半径$2$の球から点を中心とする半径$r(0 \lt r\lt 2)$の球をくり抜いてできた立体$V$がある。いま、点Oからおろした垂線の長さが$x(0 \lt x\lt 2)$である平面$P$で立体$V$を切り、2つの立体に分ける。2つの立体のうち、体積の小さい方を$V_{ 1 }$、大きい方を$V_{2}$とする。

(1)平面$P$による立体$V$の切り口の面積が$π(2-r)^2$であるとき、$x=\sqrt{ \boxed{ アイ }r^2+\boxed{ ウエ } }$である。
(2)$(0 \lt x\lt r)$のとき、$V_{1}$の体積は$(r^2+\boxed{ オカ})πx+\frac{\boxed{キク}}{\boxed{ケコ}}πr^3+\frac{\boxed{サシ}}{\boxed{スセ}}π$であり、$r \leqq x\lt2$のとき、$V_{1}$の体積は$\frac{\boxed{ソタ}}{\boxed{チツ}}πr^3+\boxed{テト}πx+\frac{\boxed{ナニ}}{\boxed{ヌネ}}π$である。
(3)$x=r$において、$V_{1}$の体積と$V_{2}$の体積の比が$1:3$になるとき、$r=\boxed{ノハ}+\sqrt{\boxed{ヒフ}}$である。また、$x=\frac{2}{3}r$において$V_{1}$の体積と$V_{2}$の体積の比が$1:3$になるとき、$r=\boxed{ヘホ}+\sqrt{\boxed{マミ}}$である。
投稿日:2024.10.17

<関連動画>

東邦大学医学部医学科(2015) #Shorts #King_property #キングプロパティ

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東邦大学
指導講師: ますただ
問題文全文(内容文):
$I=\displaystyle \int_{-2}^{2} \displaystyle \frac{x^22^{-x}}{2^x+2^{-x}} dx$

出典:2015年東邦大学医学部医学科
この動画を見る 

#高専_6#不定積分#元高専教員

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#不定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
以下の不定積分を解け。
$\displaystyle \int (3x+1)\cos2x$ $dx$
この動画を見る 

11大阪府教員採用試験(数学:2番 微積)

アイキャッチ画像
単元: #微分とその応用#積分とその応用#微分法#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
2⃣
(1)$y=x^x(x>0)$
$\frac{dy}{dx}$を求めよ。
(2)$\displaystyle \lim_{ n \to \infty } \frac{1}{\sqrt n}( \frac{1}{\sqrt (n+1)} +\frac{1}{\sqrt (n+2)} + \cdots + \frac{1}{\sqrt (2n)} )$
この動画を見る 

AkiyaMathさんと学ぶ積分問題 #King_property

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}\displaystyle \frac{log(1+2x)}{1+x+x^2}dx$
この動画を見る 

福田の数学〜立教大学2022年理学部第2問〜接線と囲まれた部分の面積と回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
実数xに対し、関数f(x)を
$f(x)=xe^{-x}$
により定める。座標平面上の曲線$C:y=f(x)$に関して、次の問(1)~(5)に答えよ。
(1)f(x)の導関数$f'(x)$を求め、$f(x)$の増減表を書け。ただし、極値も記入すること。
(2)f(x)の第2次導関数$f''(x)$を求め、Cの変曲点の座標を求めよ。
(3)Cの変曲点と、座標平面上の原点を通る直線を$l$とする。
Cとlで囲まれた領域の面積Sを求めよ。
(4)$a,\ b,\ c$を定数とし、関数$g(x)$を$g(x)=(ax^2+bx+c)e^{-2x}$と定める。
$g(x)$の導関数$g'(x)$が$g'(x)=x^2e^{-2x}$を満たすとき、$a,\ b,\ c$の値を求めよ。
(5)Cと(3)で定めたlで囲まれた領域を、x軸の周りに1回転してできる
回転体の体積Vを求めよ。

2022立教大学理学部過去問
この動画を見る 
PAGE TOP