【高校受験対策】数学-図形12 - 質問解決D.B.(データベース)

【高校受験対策】数学-図形12

問題文全文(内容文):
右の図1のような,線分$AB,AC,BC$を
それぞれ直径とする半円を組み合わせた図形があり,
$AB=12cm$,点$C$は線分$AB$の中点である.
このとき,次の各問いに答えよ. ただし,円周率は$\pi$とする.

(1)影をつけた部分の図形について,次の各問いに答えよ.

①面積を求めよ.

②周の長さを求めよ.

(2)右の図2のように,線分$AB$を直径とする半円の弧上に点$P$,
線分$BC$を直径とする半円の弧上に点$Q$をとり,
点$B$と$P$,点$C$と$P$,点$C$と$Q$をそれぞれ結ぶ.
このとき,次の各問いに答えよ.

①$\angle PBC = 65°$とのとき,影をつけた部分の面積を求めよ.

②$\angle PCQ = 90°$のとき,
$\stackrel{\huge\frown}{QB}$と$\stackrel{\huge\frown}{BP}$の長さの和を求めよ.
単元: #数学(中学生)#中2数学#中3数学#円#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図1のような,線分$AB,AC,BC$を
それぞれ直径とする半円を組み合わせた図形があり,
$AB=12cm$,点$C$は線分$AB$の中点である.
このとき,次の各問いに答えよ. ただし,円周率は$\pi$とする.

(1)影をつけた部分の図形について,次の各問いに答えよ.

①面積を求めよ.

②周の長さを求めよ.

(2)右の図2のように,線分$AB$を直径とする半円の弧上に点$P$,
線分$BC$を直径とする半円の弧上に点$Q$をとり,
点$B$と$P$,点$C$と$P$,点$C$と$Q$をそれぞれ結ぶ.
このとき,次の各問いに答えよ.

①$\angle PBC = 65°$とのとき,影をつけた部分の面積を求めよ.

②$\angle PCQ = 90°$のとき,
$\stackrel{\huge\frown}{QB}$と$\stackrel{\huge\frown}{BP}$の長さの和を求めよ.
投稿日:2016.10.18

<関連動画>

高等学校入学試験予想問題:近畿大学附属高等学校~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#1次関数#2次関数#円
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$

(1)$ \dfrac{4x-y}{9}-\dfrac{5x-4y}{12}$を計算せよ.
(2)$ xy-3y-3x+9 $を因数分解せよ.
(3)
$ \begin{eqnarray}
\left\{
\begin{array}{l}
2x-y=1 \\
2ax+by=16
\end{array}
\right.
\end{eqnarray}$

$ \begin{eqnarray}
\left\{
\begin{array}{l}
ax+2y=8 \\
-3x+2y=3
\end{array}
\right.
\end{eqnarray}$
が同じ解をもつとき,$ a,b $の値を求めよ.

$ \boxed{2}$

図のように,関数$ y=x^2 $のグラフと直線$ y=-2x+8 $との交点を$ A,B,$直線$AB $の中点を$M$とするとき,次の問いに答えよ.
ただし,点$A$のx座標は負とする.
(1)点$A$の座標を求めよ.
(2)直線$OM$の式を求めよ.
(3)$ \triangle OCM $をx軸のまわりに1回転させてできる立体の体積を求めよ.

$ \boxed{3}$

図のように,点$O$を中心とし,線分$AB$を直径とする半径6の円があり,点$C$は線分$OB$の中点である,2点$D,E$は直径$AB$に対して同じ側の円周上にあり,$AB$と$CD$は直角,$AB$と$OE$は直角となっている.
また,線分$AD$と線分$OE$の交点を点$F$とする.
このとき,次の問いに答えよ.
(1)$CD$の長さを求めよ.
(2)$ \triangle AEF$の面積を求めよ.
(3)$ AF:AD$の比を求めよ.また,$\triangle DEF $の面積を求めよ.
この動画を見る 

福田の数学〜京都大学2023年理系第6問〜チェビシェフの多項式と論証(PART1)

アイキャッチ画像
単元: #式の計算(単項式・多項式・式の四則計算)#数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#その他#推理と論証#推理と論証#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{6}$ pを3以上の素数とする。また、θを実数とする。
(1)$\cos3\theta$と$\cos4\theta$を$\cos\theta$の式として表せ。
(2)$\cos\theta$=$\frac{1}{p}$のとき、θ=$\frac{m}{n}$・$\pi$となるような正の整数m,nが存在するか否かを理由をつけて判定せよ。

チェビシェフの多項式
$\cos n\theta$=$T_n$($\cos\theta$)を満たすn次の多項式$T_n(x)$が存在し、その係数はすべて整数であり、最高次の係数が$2^{n-1}$である。
これが、すべての自然数nについて成り立つことを数学的帰納法で証明せよ。

2023京都大学理系過去問
この動画を見る 

30秒にまとめた多分野にまたがる入試問題~全国入試問題解法 #Shorts #数学 #高校受験 #sound

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(展開、因数分解)#確率#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$c$のとりうる値は何通りあるか.
$(x+a)(x+b)$
を展開すると
$x^2+cx+12$
となる.

中大杉並高校過去問
この動画を見る 

高校入試じゃないよ 中学入試だよ 2023西大和学園中

アイキャッチ画像
単元: #算数(中学受験)#数学(中学生)#中2数学#過去問解説(学校別)#三角形と四角形
指導講師: 数学を数楽に
問題文全文(内容文):
△ABCは正三角形
$\angle$アは何度?
*図は動画内参照

2023西大和学園中学校
この動画を見る 

3つの二等辺三角形 名古屋高校

アイキャッチ画像
単元: #数学(中学生)#中2数学#平面図形#三角形と四角形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
図のXを求めよ。
この動画を見る 
PAGE TOP