福田の数学〜筑波大学2023年理系第4問〜定積分と不等式と回転体の体積 - 質問解決D.B.(データベース)

福田の数学〜筑波大学2023年理系第4問〜定積分と不等式と回転体の体積

問題文全文(内容文):
$\Large\boxed{4}$ a, bを実数とし、$f(x)$=$x$+$a\sin x$, $g(x)$=$b\cos x$とする。
(1)定積分$\displaystyle\int_{-\pi}^{\pi}$$f(x)g(x)dx$ を求めよ。
(2)不等式$\displaystyle\int_{-\pi}^{\pi}$$\left\{f(x)+g(x)\right\}^2dx$≧$\displaystyle\int_{-\pi}^{\pi}$$\left\{f(x)\right\}^2dx$ が成り立つことを示せ。
(3)曲線$y$=|$f(x)$+$g(x)$|、2直線$x$=$-\pi$, $x$=$\pi$、および$x$軸で囲まれた図形を$x$軸の周りに1回転させてできる回転体の体積をVとする。このとき不等式
V≧$\displaystyle\frac{2}{3}r^2$$(r^2-6)$
が成り立つことを示せ。さらに、等号が成立するときのa, bを求めよ。

2023筑波大学理系過去問
単元: #大学入試過去問(数学)#積分とその応用#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#体積・表面積・回転体・水量・変化のグラフ#数学(高校生)#筑波大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ a, bを実数とし、$f(x)$=$x$+$a\sin x$, $g(x)$=$b\cos x$とする。
(1)定積分$\displaystyle\int_{-\pi}^{\pi}$$f(x)g(x)dx$ を求めよ。
(2)不等式$\displaystyle\int_{-\pi}^{\pi}$$\left\{f(x)+g(x)\right\}^2dx$≧$\displaystyle\int_{-\pi}^{\pi}$$\left\{f(x)\right\}^2dx$ が成り立つことを示せ。
(3)曲線$y$=|$f(x)$+$g(x)$|、2直線$x$=$-\pi$, $x$=$\pi$、および$x$軸で囲まれた図形を$x$軸の周りに1回転させてできる回転体の体積をVとする。このとき不等式
V≧$\displaystyle\frac{2}{3}r^2$$(r^2-6)$
が成り立つことを示せ。さらに、等号が成立するときのa, bを求めよ。

2023筑波大学理系過去問
投稿日:2023.07.01

<関連動画>

大学入試問題#575「こんな感じかな?で解けるはず」 大阪教育大学(2014) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#大阪教育大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{6}} e^{3x}\sin^2\ x\ \sin(x+\displaystyle \frac{\pi}{4})\ dx$

出典:2014年大阪教育大学 入試問題
この動画を見る 

福田の数学〜九州大学2022年理系第4問〜定積分の定義から性質を証明する

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#微分とその応用#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
定積分について述べた次の文章を読んで、後の問いに答えよ。
区間$a \leqq x \leqq b$で連続な関数f(x)に対して$F'(x)=f(x)$となる$F(x)$を1つ選び、
$f(x)$のaからbまでの定積分を
$\int_a^bf(x)dx=F(b)-F(a)         \ldots①$
で定義する。定積分の値はF(x)の選び方によらずに定まる。
定積分は次の性質(A),(B),(C)をもつ。
(A)$\int_a^b\left\{kf(x)+lg(x)\right\}dx=k\int_a^bf(x)dx+l\int_a^bg(x)dx$
(B)$ a \leqq c \leqq b$のとき、$\int_a^cf(x)dx+\int_c^bf(x)dx=\int_a^bf(x)dx$
(C)区間$a \leqq x \leqq b$において$g(x) \geqq h(x)$ならば、$\int_a^bg(x)dx \geqq \int_a^bh(x)dx$
ただし、$f(x),g(x),h(x)$は区間$a \leqq x \leqq b$で連続な関数、$k,l$は定数である。
以下、$f(x)$を区間$0 \leqq x \leqq 1$で連続な増加関数とし、
nを自然数とする。定積分の性質$\boxed{\ \ ア\ \ }$を用い、定数関数に対する定積分の計算を行うと、
$\frac{1}{n}f(\frac{i-1}{n}) \leqq \int_{\frac{i-1}{n}}^{\frac{i}{n}}f(x)dx \leqq \frac{1}{n}f(\frac{i}{n})  (i = 1,2,\ldots,n)     \ldots②$
が成り立つことがわかる。$S_n=\frac{1}{n}\sum_{i=1}^nf(\frac{i-1}{n})$とおくと、
不等式②と定積分の性質$\boxed{\ \ イ\ \ }$より次の不等式が成り立つ。
$0 \leqq \int_0^1f(x)dx-S_n \leqq \frac{f(1)-f(0)}{n}     \ldots③$
よって、はさみうちの原理より$\lim_{n \to \infty}S_n=\int_0^1f(x)dx$が成り立つ。

(1)関数F(x),G(x)が微分可能であるとき、$\left\{F(x)+G(x)\right\}'=F'(x)+G'(x)$が
成り立つことを、導関数の定義に従って示せ。
また、この等式と定積分の定義①を用いて、性質(A)で$k=l=1$とした場合の等式
$\int_a^b\left\{f(x)+g(x)\right\}dx=\int_a^bf(x)dx+\int_a^bg(x)dx$ を示せ。
(2)定積分の定義①と平均値の定理を用いて、次を示せ。
$a \lt b$のとき、区間$a \leqq x \leqq b$において$g(x) \gt 0$ならば、$\int_a^bg(x)dx \gt 0$
(3)(A),(B),(C)のうち、空欄$\boxed{\ \ ア\ \ }$に入る記号として最もふさわしいものを
1つ選び答えよ。また、文章中の下線部の内容を詳しく説明することで、
不等式②を示せ。
(4)(A),(B),(C)のうち、空欄$\boxed{\ \ イ\ \ }$に入る記号として最もふさわしいものを
1つ選び答えよ。また、不等式③を示せ。

2022九州大学理系過去問
この動画を見る 

ハルハルさんの積分問題(準備) 難易度高めの最後まで気が抜けない!!

アイキャッチ画像
単元: #三角関数#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$K=\displaystyle \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \displaystyle \frac{dx}{\sin\ x-2\cos\ x+3}$
この動画を見る 

【高校数学】毎日積分67日目~47都道府県制覇への道~【⑪徳島】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#徳島大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\displaystyle f(x)=\frac{2x^2-x-1}{x^2+2x+2}$とする。
(1)$\displaystyle\lim_{x\to -\infty} f(x)$および$\displaystyle \lim_{x\to \infty} f(x)$を求めよ。
(2)導関数$f'(x)$を求めよ。
(3)関数$y=f(x)$の最大値と最小値を求めよ。
(4)曲線$y=f(x)$と$x$軸で囲まれた部分の面積を求めよ。
【徳島大学 2023】
この動画を見る 

【数Ⅲ】【積分とその応用】定積分の種々の問題2 ※問題文は概要欄

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数を$x$について微分せよ。
(1) $\displaystyle y=\int_x^{2x}\cos^2t~dt$

(2) $\displaystyle y=\int_x^{x^2}e^t\sin t~dt$
この動画を見る 
PAGE TOP