【数Ⅰ】【図形と計量】三角比大小比較 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅰ】【図形と計量】三角比大小比較 ※問題文は概要欄

問題文全文(内容文):
次の三角比の値を,小さい方から順に並べよ。ただし,三角比の表は用いないものとする。
cos10°,sin40°,cos80°,sin110°,sin130°,sin160°
チャプター:

0:00 オープニング
1:24 90°未満のcosをsinで表す
2:57 鈍角のsinを鋭角のsinで表す
5:00 90°に近いほどsinの値は◯◯
6:08 sinの値を元の三角比に直す

単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の三角比の値を,小さい方から順に並べよ。ただし,三角比の表は用いないものとする。
cos10°,sin40°,cos80°,sin110°,sin130°,sin160°
投稿日:2025.01.29

<関連動画>

福田の1.5倍速演習〜合格する重要問題084〜東北大学2018年度理系第4問〜三角形の内接円と外接円の半径の関係

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#三角比(三角比・拡張・相互関係・単位円)#三角関数#三角関数とグラフ#加法定理とその応用#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 三角形ABCの内接円の半径をr, 外接円の半径をRとし、h=$\frac{r}{R}$とする。
また、$\angle$A=2α, $\angle$B=2β, $\angle$C=2γ とおく。
(1)h=4$\sin\alpha\sin\beta\sin\gamma$となることを示せ。
(2)三角形ABCが直角三角形のときh≦$\sqrt 2-1$が成り立つことを示せ。
また、等号が成り立つのはどのような場合か。
(3)一般の三角形ABCに対してh≦$\frac{1}{2}$が成り立つことを示せ。また等号が成り立つのはどのような場合か。

2018東北大学理系過去問
この動画を見る 

総合問題2020

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(5+\sqrt{ 26 })^{2020}$の1の位の数を求めよ
この動画を見る 

4の累乗の和で平方数を作れ

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b,c,n$は自然数である.
$4^a+4^b+4^c=n^2$
$10\lt a\lt b\lt c$を満たす$(a,b,c)$を1組与えよ.
この動画を見る 

【正弦定理】超簡単な証明。式なしで証明できるwww【数学】

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
正弦定理の簡単な証明解説動画です
この動画を見る 

センター試験 数学1A満点のもっちゃんがセンター数学やるよ

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2-5x+3=0$の2解を$\alpha, \beta$
(1)$\alpha^3,\beta^3$を解にもつ2次方程式
  $x^2+px+q=0$ $p,q$の値



(2)$|\alpha-\beta|=m+d$
$(m$整数,$0 \leqq d \lt 1)$
$n \leqq 10d \lt n+1$ 整数$n$


過去問:センター試験
この動画を見る 
PAGE TOP