【数Ⅰ】【図形と計量】三角比大小比較 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅰ】【図形と計量】三角比大小比較 ※問題文は概要欄

問題文全文(内容文):
次の三角比の値を,小さい方から順に並べよ。ただし,三角比の表は用いないものとする。
cos10°,sin40°,cos80°,sin110°,sin130°,sin160°
チャプター:

0:00 オープニング
1:24 90°未満のcosをsinで表す
2:57 鈍角のsinを鋭角のsinで表す
5:00 90°に近いほどsinの値は◯◯
6:08 sinの値を元の三角比に直す

単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の三角比の値を,小さい方から順に並べよ。ただし,三角比の表は用いないものとする。
cos10°,sin40°,cos80°,sin110°,sin130°,sin160°
投稿日:2025.01.29

<関連動画>

指数・対数連立不等式 京都府立大

アイキャッチ画像
単元: #2次関数#2次方程式と2次不等式#2次関数とグラフ#指数関数と対数関数#指数関数#対数関数
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a>0,a \neq 1$とする.
$\begin{eqnarray}
\left\{
\begin{array}{l}
a^{2x-4}-1<a^{x+1}-a^{x-5} \\
2\log_a(x-2)\geqq \log_a(x-2)+\log_a5
\end{array}
\right.
\end{eqnarray}$
連立不等式を解け.
この動画を見る 

佐賀大(医)無理数の証明

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2018年 佐賀大学医学部 過去問

①nが平方数でない自然数のとき、
$\sqrt{n}$は無理数であることを示せ。

②$a,b$は正の有理数、$m$は自然数のとき、
$a\sqrt{m}+b\sqrt{m + 1}$
は無理数であることを示せ。
この動画を見る 

千葉大 ドゥモアブルの定理

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha=\cos\dfrac{2}{7}\pi+i\sin\dfrac{2}{7}\pi$
①$\alpha^6+\alpha^5+\alpha^4+\alpha^3+\alpha^2+\alpha$の値を求めよ.
②$(1-\alpha)(1-\alpha^2)(1-\alpha^3)\times(1-\alpha^4)(1-\alpha^5)$
$(1-\alpha^6)$の値を求めよ.

千葉大過去問
この動画を見る 

福田のわかった数学〜高校3年生理系104〜絶対不等式(2)

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 絶対不等式(2)
$\sqrt x+\sqrt y \leqq k\sqrt{2x+y}$
が任意の正の実数x,yに対して成り立つような実数$k$
の値の範囲を求めよ。
この動画を見る 

数と式 式の展開②【化学のタカシーがていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
展開せよ
$(a+1)^3$  $(x+3y)^3$
$(2a-1)^3$  $(-3a+2b)^3$

展開せよ
$(a+5)(a^2-5a+25)$
$(3-a)(9+3a+a^2)$
$(2x+y)(4x^2-2xy+y^2)$
$(3a-2b)(9a^2+6ab+4b^2)$

計算せよ
$(x-1)(x-3)(x+1)(x+3)$    $(x+2)(x+5)(x-4)(x-1)$
$(a-b)(a+b)(a+b)(a+b)$     $(2x-y)^3(2x+y)^3$
$(a+b)^2(a-b)^2(a+ab+b)^2(a-ab+b)^2$
$(x+2)(x-2)(x^2+2x+4)(x^2-2x+4)$
$(a+b+c)^2+(a+b-c)^2+(b+c-a)^2+(c+a-b)^2$
この動画を見る 
PAGE TOP