大学入試問題#262 信州大学(2022) #定積分 #Kingproperty - 質問解決D.B.(データベース)

大学入試問題#262 信州大学(2022) #定積分 #Kingproperty

問題文全文(内容文):
$\displaystyle \int_{-\pi}^{\pi}\displaystyle \frac{dx}{1+e^{-2\sin\ x}}$

出典:2022年信州大学 入試問題
チャプター:

00:00 問題提示
00:10 本編スタート
04:27 作成した解答①の掲載
04:40 作成した解答②の掲載

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-\pi}^{\pi}\displaystyle \frac{dx}{1+e^{-2\sin\ x}}$

出典:2022年信州大学 入試問題
投稿日:2022.07.24

<関連動画>

福田の数学〜中央大学2023年経済学部第1問(3)〜三角関数の最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$0\leqq x\leqq \require{physics}\flatfrac{\pi}{2}$のとき、次の関数が最大となる$x$の値を求めよ。
$y=\sin ^22x+2\cos^2x$

2023中央大学経済学部過去問
この動画を見る 

大学入試問題#329 熊本大学(2013) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#熊本大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{3}}^{\frac{\pi}{2}}\displaystyle \frac{\sin\displaystyle \frac{\theta}{2}}{1+\sin\displaystyle \frac{\theta}{2}}d\theta$

出典:2013年熊本大学 入試問題
この動画を見る 

広島大 円の方程式 三角比 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#円と方程式#加法定理とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
広島大学過去問題
2つの円
$x^2+y^2+(2\sqrt2sinθ)x-\frac{\sqrt{17}}{2}y+sin^2θ+$
$\frac{17}{16}=0$
$x^2+y^2=\frac{9}{16} \quad (0^\circ < θ < 180^\circ)$
が共有点をもたないようなθの範囲を求めよ。
この動画を見る 

福田の数学〜早稲田大学2025社会科学部第2問〜階差数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

数列$\{a_n\}$の階差数列を$\{b_n\}$、すなわち

$b_n=a_{n+1}-a_n \quad (n=1,2,3,\cdots)$

とする。次の問いに答えよ。

(1)$a_n=-\dfrac{1}{n}$のとき、

$b_n$を$n$の式で表す。

(2)$b_n=\dfrac{1}{n(n+1)}$のとき、

$a_n$を$n$の式で表せ。ただし、$a_1=1$とする。

(3)数列$\{b_n\}$が以下を満たすとき、

$a_n$を$n$の式で表せ。ただし、$a_1=1$とする。

$\begin{eqnarray}
\left\{
\begin{array}{l}
b_1=1 \\
b_n=n(n+1) \quad (n\geqq 2)
\end{array}
\right.
\end{eqnarray}$

$2025$念早稲田大学社会科学部過去問題
この動画を見る 

大学入試問題#664「三角関数or複素平面」 藤田医科大学(2023) 2024年入学

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#藤田医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \sum_{k=1}^4 \cos\displaystyle \frac{2k}{9}\pi$の値を求めよ

出典:2023年藤田医科大学 入試問題
この動画を見る 
PAGE TOP