大学入試問題#758 「ミスりようがない。」 東京理科大学理学部(2002) #方程式 - 質問解決D.B.(データベース)

大学入試問題#758 「ミスりようがない。」 東京理科大学理学部(2002) #方程式

問題文全文(内容文):
方程式$(x+2)(x+3)(x-4)(x-5)=44$を解け。

出典:2002年東京理科大学理学部 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
方程式$(x+2)(x+3)(x-4)(x-5)=44$を解け。

出典:2002年東京理科大学理学部 入試問題
投稿日:2024.03.08

<関連動画>

福田の1.5倍速演習〜合格する重要問題050〜一橋大学2017年度文系第2問〜連立方程式の整数解

アイキャッチ画像
単元: #連立方程式#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ 連立方程式$\\$
$\left\{\begin{array}{1}
x^2=yz+7\\
y^2=zx+7\\
z^2=xy+7\\
\end{array}\right.\\$ 
を満たす整数の組(x,y,z)でx $\leqq$ y $\leqq$ zとなるものを求めよ。

2017一橋大学文系過去問
この動画を見る 

【高校数学】名古屋大学2024年の手強い積分の問題をその場で解説しながら解いてみた!毎日積分82日目~47都道府県制覇への道~【㉕愛知】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【名古屋大学 2024】
袋の中にいくつかの赤玉と白玉が入っている。すべての玉に対する赤玉の割合を$p(0≦p≦1)$とする。袋から無作為に玉を一つ取り出して袋に戻す試行を行う。試行を$n$回行うとき、赤玉を$k$回以上取り出す確率を$f(k)$をおく。
(1) $n≧2$に対して、$f(1), f(2)$を求めよ。
(2) $k=1,2, ・・・・・・,n$に対して、等式
$\displaystyle f(k)=\frac{n!}{(k-1)!(n-k)!}\int_0^px^{k-1}(1-x)^{n-k}dx$
を示せ。
(3) 自然数$k$に対して、定積分
$\displaystyle I=\int_0^{\frac{1}{2}}x^k(1-x)^k dx$
を求めよ。
この動画を見る 

大学入試問題#50 神戸大学2016 x軸回転体

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$a \gt 0$
$C_1:y=log\ x$
$c_2:y=ax^2$
$c_1$と$c_2$は接する。
$c_1,\ c_2,\ x$軸で囲まれた部分を$x$軸のまわりに1回転させてできる体積を求めよ。

出典:2016年神戸大学 入試問題
この動画を見る 

重積分⑤【積分順序の変更(応用)】(高専数学 微積II,数検1級1次対応)

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#高専(高等専門学校)
指導講師: ますただ
問題文全文(内容文):
(1)$\int_0^1 \int_y^1 sinx^2dxdy$
(2)$\int_0^{\sqrt3} \int_1^{\sqrt{4-x^2}} \frac{x}{\sqrt{x^2+y^2}} dydx$
この動画を見る 

福田の数学〜北海道大学2025文系第4問〜関数方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

関数$f(x)$は、

すべての実数$x$およびすべての整数$n$について

$f(nx)={f(x)}^n$を満たし、

さらに$f(1)=2$を満たすとする。

ただし、$f(x)$のとりうる値は$0$でない実数とする。

(1)$f(n) \leqq 100$となるような最大の整数$n$を求めよ。

(2)すべての実数$x$について

$f(x)\gt 0$であることを証明せよ。

(3)$f(0.25)$を求めよ。

(4)$a$が有理数のとき、$f(a)$を$a$で表せ。

$2025$年北海道大学文系過去問題
この動画を見る 
PAGE TOP