問題文全文(内容文):
次の関数を微分せよ
y= sin²3x
y= sin⁵x+cos5x
y= sin⁴xcos⁴x
y= √(1+sin²x)
y= sin√(x²+x+1)
y= (tanx + 1/tanx)²
y= cosx/(1-sinx)
y= (1-sinx) / (1+cosx)
次の極限値を求めよ
lim_(x→a) (sinx - sina) / sin(x-a)
lim_(x→a) (x²sina - a²sinx) / (x-a)
次の関数を微分せよ。ただしa,bは定数で、a>0,a≠0 とする。
y= e^(-2x) sin2x
y= 10^sinx
y= log_x(a)
y= log(logx)
y= log_a(sinx)
y= log(1-cosx)
y= log_a(x+√(x²-a²)
y= log ((x²-b) / (x²+b))
次の関数を微分せよ
y= sin²3x
y= sin⁵x+cos5x
y= sin⁴xcos⁴x
y= √(1+sin²x)
y= sin√(x²+x+1)
y= (tanx + 1/tanx)²
y= cosx/(1-sinx)
y= (1-sinx) / (1+cosx)
次の極限値を求めよ
lim_(x→a) (sinx - sina) / sin(x-a)
lim_(x→a) (x²sina - a²sinx) / (x-a)
次の関数を微分せよ。ただしa,bは定数で、a>0,a≠0 とする。
y= e^(-2x) sin2x
y= 10^sinx
y= log_x(a)
y= log(logx)
y= log_a(sinx)
y= log(1-cosx)
y= log_a(x+√(x²-a²)
y= log ((x²-b) / (x²+b))
チャプター:
0:00 本編開始
単元:
#微分とその応用#色々な関数の導関数#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の関数を微分せよ
y= sin²3x
y= sin⁵x+cos5x
y= sin⁴xcos⁴x
y= √(1+sin²x)
y= sin√(x²+x+1)
y= (tanx + 1/tanx)²
y= cosx/(1-sinx)
y= (1-sinx) / (1+cosx)
次の極限値を求めよ
lim_(x→a) (sinx - sina) / sin(x-a)
lim_(x→a) (x²sina - a²sinx) / (x-a)
次の関数を微分せよ。ただしa,bは定数で、a>0,a≠0 とする。
y= e^(-2x) sin2x
y= 10^sinx
y= log_x(a)
y= log(logx)
y= log_a(sinx)
y= log(1-cosx)
y= log_a(x+√(x²-a²)
y= log ((x²-b) / (x²+b))
次の関数を微分せよ
y= sin²3x
y= sin⁵x+cos5x
y= sin⁴xcos⁴x
y= √(1+sin²x)
y= sin√(x²+x+1)
y= (tanx + 1/tanx)²
y= cosx/(1-sinx)
y= (1-sinx) / (1+cosx)
次の極限値を求めよ
lim_(x→a) (sinx - sina) / sin(x-a)
lim_(x→a) (x²sina - a²sinx) / (x-a)
次の関数を微分せよ。ただしa,bは定数で、a>0,a≠0 とする。
y= e^(-2x) sin2x
y= 10^sinx
y= log_x(a)
y= log(logx)
y= log_a(sinx)
y= log(1-cosx)
y= log_a(x+√(x²-a²)
y= log ((x²-b) / (x²+b))
投稿日:2025.02.12