【数Ⅲ】【微分とその応用】色々な関数の微分1 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅲ】【微分とその応用】色々な関数の微分1 ※問題文は概要欄

問題文全文(内容文):
次の関数を微分せよ
y= sin²3x
y= sin⁵x+cos5x
y= sin⁴xcos⁴x
y= √(1+sin²x)
y= sin√(x²+x+1)
y= (tanx + 1/tanx)²
y= cosx/(1-sinx)
y= (1-sinx) / (1+cosx)

次の極限値を求めよ
lim_(x→a) (sinx - sina) / sin(x-a)
lim_(x→a) (x²sina - a²sinx) / (x-a)

次の関数を微分せよ。ただしa,bは定数で、a>0,a≠0 とする。
y= e^(-2x) sin2x
y= 10^sinx
y= log_x(a)
y= log(logx)
y= log_a(sinx)
y= log(1-cosx)
y= log_a(x+√(x²-a²)
y= log ((x²-b) / (x²+b))
チャプター:

0:00 本編開始

単元: #微分とその応用#色々な関数の導関数#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数を微分せよ
y= sin²3x
y= sin⁵x+cos5x
y= sin⁴xcos⁴x
y= √(1+sin²x)
y= sin√(x²+x+1)
y= (tanx + 1/tanx)²
y= cosx/(1-sinx)
y= (1-sinx) / (1+cosx)

次の極限値を求めよ
lim_(x→a) (sinx - sina) / sin(x-a)
lim_(x→a) (x²sina - a²sinx) / (x-a)

次の関数を微分せよ。ただしa,bは定数で、a>0,a≠0 とする。
y= e^(-2x) sin2x
y= 10^sinx
y= log_x(a)
y= log(logx)
y= log_a(sinx)
y= log(1-cosx)
y= log_a(x+√(x²-a²)
y= log ((x²-b) / (x²+b))
投稿日:2025.02.12

<関連動画>

福田の数学〜早稲田大学2022年人間科学部第2問〜三角不等式の解

アイキャッチ画像
単元: #大学入試過去問(数学)#三角関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
22sinθ+sin2θ+2sin3θ2sin2θcosθ>0(0<θ<π)
を満たすθの範囲は
0<θ<         π,          π<θ<π
である。

2022早稲田大学人間科学部過去問
この動画を見る 

立教大 関数の最小値

アイキャッチ画像
単元: #微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
x>0とする.
(x+1x)(x+2x)の最小値を求めよ.

2021立教大過去問
この動画を見る 

慶応義塾大 4次方程式

アイキャッチ画像
単元: #関数と極限#微分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#関数の極限#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
3x44x312x2k=0が相異なる4つの実数解をもつkの範囲
そのときの4つの解のうち最大のものをαとする。
αの範囲を求めよ

出典:1989年慶應義塾大学 過去問
この動画を見る 

【数Ⅲ】【微分とその応用】n次導関数と微分の表し方 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#微分法#色々な関数の導関数#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数について, dydx を求めよ。ただし (1)(2)では y を用いて表してもよい。また(3)(4)では、t$$ の関数として表せ。a,bは正の定数とする。

x²+3xyy²=1

xの関数 y が、t を媒介変数として x=cost+tsint,y=sinttcost と表せるとき、d2ydx2tの関数として表せ。
この動画を見る 

福田の数学〜慶應義塾大学2021年理工学部第4問〜はさみうちの原理と区分求積

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#微分法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
4
(1)a0<a12を満たす定数とする。x0の範囲で不等式
a(xx24)log(1+ax) が成り立つことを示しなさい。

(2)bを実数の定数とする。x0の範囲で不等式
log(1+12x)bx
が成り立つようなbの最小値は    である。

(3)nkを自然数とし、I(n,k)=limt+00knlog(1+12tx)t(1+x)dx
とおく。I(n,k)を求めると、I(n,k)=    である。また
limn1nk=1nI(n,k)=     である。
この動画を見る 
PAGE TOP preload imagepreload image