2023高校入試数学解説84問目 一次関数と二次関数 埼玉県学校選択問題 - 質問解決D.B.(データベース)

2023高校入試数学解説84問目 一次関数と二次関数  埼玉県学校選択問題

問題文全文(内容文):
$y=ax^2$
$y=bx+c$
a,b,c大小関係を不等号で表せ
*図は動画内参照

2023埼玉県
単元: #数学(中学生)#中2数学#中3数学#1次関数#2次関数#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$y=ax^2$
$y=bx+c$
a,b,c大小関係を不等号で表せ
*図は動画内参照

2023埼玉県
投稿日:2023.02.26

<関連動画>

【中学数学】点Pの1次関数の問題演習~解き方を身に付けろ~ 3-7【中2数学】

アイキャッチ画像
単元: #中2数学#1次関数
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
図のような長方形$ABCD$がある。点$P$は点$A$を出発し、毎秒$1\,\rm{cm}$の速さで長方形の周上を$A$から$D$まで移動する。
このとき、点$P$が点$A$を出発して$x$秒後の$\triangle APD$の面積を$y\,\rm{cm}^2$とする。
(1)点$P$が次の辺にあるとき$x$の変域を答えよ
①辺$AB$ ②辺$BC$ ③辺$CD$

(2)$x$が点$A$を出発してから点$D$に着くまでの$x$と$y$の関係をグラフに表せ
この動画を見る 

福田のおもしろ数学023〜10秒でできたら天才〜三角形と平行線と角の二等分線

アイキャッチ画像
単元: #数A#図形の性質#平行と合同#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$BC /\!/ DE$ 、 CD は $\angle ACB$ の二等分線、 CF は $\angle ACG$ の二等分線、 CE=3 のとき、 DF=?
この動画を見る 

福田の数学〜京都大学2023年理系第6問〜チェビシェフの多項式と論証(PART1)

アイキャッチ画像
単元: #式の計算(単項式・多項式・式の四則計算)#数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#その他#推理と論証#推理と論証#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{6}$ pを3以上の素数とする。また、θを実数とする。
(1)$\cos3\theta$と$\cos4\theta$を$\cos\theta$の式として表せ。
(2)$\cos\theta$=$\frac{1}{p}$のとき、θ=$\frac{m}{n}$・$\pi$となるような正の整数m,nが存在するか否かを理由をつけて判定せよ。

チェビシェフの多項式
$\cos n\theta$=$T_n$($\cos\theta$)を満たすn次の多項式$T_n(x)$が存在し、その係数はすべて整数であり、最高次の係数が$2^{n-1}$である。
これが、すべての自然数nについて成り立つことを数学的帰納法で証明せよ。

2023京都大学理系過去問
この動画を見る 

【数学】中2-45 対頂角 同位角 錯角① 基本編

アイキャッチ画像
単元: #数学(中学生)#中2数学#角度と面積#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図について・・・

$\angle b$の対頂角は①,$\angle e$の対頂角は②
$\angle d$の同位角は③,$\angle f$の同位角は④
$\angle c$の錯角は⑤,$\angle h$の錯角は⑥

右の図$(\ell /\!/ m)$について角度を求めよう.







図は動画内参照
この動画を見る 

中2数学「同類項・式の加法と減法」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
例1
次の計算をしなさい.

(1)$4a-3b-a+5b$
(2)$x^2-3x+2x^2+5x$
(3)$3ab-2a-ab+a$
(4)$\dfrac{x}{6}+\dfrac{y}{3}+\dfrac{y}{4}-\dfrac{x}{9}$

例2
(1)$(4x-y)+(x+5y)$
(2)$(3x+7y)-(2x-5y)$
(3)$(2x^2+5x-1)-(3-4x^2+x)$
(4)
$\begin{array}{r}
3x-2y \\[0.5pt]
\underline{+\phantom{0}2x+5y}\\[-3pt]
\\[-3pt]
\end{array}$

(5)
$\begin{array}{r}
-2x+5y-4 \\[0.5pt]
\underline{-\phantom{0}-5x-3y+6}\\[-3pt]
\\[-3pt]
\end{array}$
この動画を見る 
PAGE TOP