2023高校入試数学解説84問目 一次関数と二次関数 埼玉県学校選択問題 - 質問解決D.B.(データベース)

2023高校入試数学解説84問目 一次関数と二次関数  埼玉県学校選択問題

問題文全文(内容文):
$y=ax^2$
$y=bx+c$
a,b,c大小関係を不等号で表せ
*図は動画内参照

2023埼玉県
単元: #数学(中学生)#中2数学#中3数学#1次関数#2次関数#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$y=ax^2$
$y=bx+c$
a,b,c大小関係を不等号で表せ
*図は動画内参照

2023埼玉県
投稿日:2023.02.26

<関連動画>

【高校受験対策/数学】死守75

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#2次方程式#1次関数#平行と合同#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守75

①$-8+5$を計算しなさい。

②$1+3×-(\frac{2}{7})$を計算しなさい。

③$2(a+4b)+3(a-2b)$を計算しなさい。

④$\sqrt{27}-\frac{6}{\sqrt{3}}$を計算しなさい。

⑤$(x+1)^2+(x-4)(x+2)$を計算しなさい。

⑥次の式を因数分解しなさい。
$9x^2-4y^2$

⑦右の図のように、長方形$ABCD$を対角線$AC$を折り目として折り返し、
頂点$B$が移った点を$E$とする。
$\angle ACE=20°$のとき、$\angle x$の大きさを求めなさい。

⑧右の図のように、2点$A(2,6)$、$B(8,2)$がある。
次の文中の(ア)、(イ)にあてはまる数を求めなさい。

直線$y=ax$のグラフが、線分$AB$上の点を通るとき、$a$の値の範囲は、(ア) $ \leqq a\leqq$ (イ)である。
この動画を見る 

キレイな答え

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$2015 \times 98 - 2014 \times 99 +2016$

関西大学第一高等学校
この動画を見る 

【中学数学】連立方程式:基礎の基礎から解説!その4 ついに計算で!

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の連立方程式を解け。
x+y=10,x-y=6
この動画を見る 

【高校受験対策】数学-関数38

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数#平行と合同
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・関数38

Q.
右の図で、直線$l$は関数$y=\frac{1}{2}x+6$のグラフです。点$A$・点$B$は直線$l$上の点で、点$A$の座標は$(-2,5)$、点$B$の座標は$(4,8)$です。 このとき次の各問に答えなさい。

①2点、$o,A$を通る直線の傾きを求めなさい。
点$P$は$x$軸上の$x>0$の部分にあり、$△APB$の面積は$26cm^2$です。

②点$P$の座標を求めなさい。

③点$P$を通り、$△APB$の面積を2等分する直線の式を求めなさい。
この動画を見る 

【高校受験対策/数学】死守66

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#2次方程式#空間図形#文字と式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守66

①$6x\times2xy\div3y$を計算しなさい。

②$\sqrt{18}-6\sqrt{2}$を計算しなさい。

③$x^2+4x-12$を因数分解しなさい。

④2次方程式$3x^2-5x+1=0$を解きなさい。

⑤方程式$5x+3=2x+6$を解きなさい。

⑥$\frac{1}{2}(3x-y)-\frac{4x-y}{3}$を計算しなさい。

⑦2次方程式$2(x-2)^2-3(x-2)+1=0$を解きなさい。

⑧$x=2+\sqrt{3}$、$y=2-\sqrt{3}$のとき、$(1+\frac{1}{x})(1+\frac{1}{y})$の値を求めなさい。

⑨右の図のような、底面の半径が3cm、高さが4cmの円錐があります。この円錐の表面積を求めなさい。ただし円周率は$\pi$とします。

➉右の図のように、円Oとこの円の外部の点Pがあります。
点Pを通る円の接線をコンパスと定規を使って1つ作図しなさい。
ただし、作するためにかいた線は消さないでおきなさい。
この動画を見る 
PAGE TOP