福田の入試問題解説〜慶應義塾大学2022年理工学部第1問(1)〜空間のベクトル方程式 - 質問解決D.B.(データベース)

福田の入試問題解説〜慶應義塾大学2022年理工学部第1問(1)〜空間のベクトル方程式

問題文全文(内容文):
(1)$\overrightarrow{ a }=(\sqrt3,0,1)$とする。
空間ベクトル$\overrightarrow{ b }, \overrightarrow{ c }$はともに大きさが1であり、
$\overrightarrow{ a }∟\overrightarrow{ b }, \overrightarrow{ b }∟\overrightarrow{ c }, \overrightarrow{ c }∟\overrightarrow{ a }$とする。
$(\textrm{i})p,q,r$を実数とし、$\overrightarrow{ x }=p\overrightarrow{ a }+q\overrightarrow{ b }+r\overrightarrow{ c }$とするとき、
内積$\overrightarrow{ x }・\overrightarrow{ a }$と$\overrightarrow{ x }$の大きさ$|\overrightarrow{ x }|$をp,q,rを用いて表すと、
$\overrightarrow{ x }・\overrightarrow{ a }=\boxed{\ \ ア\ \ },|\ \overrightarrow{ x } \ |=\boxed{\ \ イ\ \ }$である。
$(\textrm{ii})(5,0,z)=s\overrightarrow{ a }+(\cos\theta)\overrightarrow{ b }+(\sin\theta)\overrightarrow{ c }$を満たす実数$s,\theta$が存在するような
実数zは2個あるが、それらを全て求めると$z=\boxed{\ \ ウ\ \ }$である。

2022慶應義塾大学理工学部過去問
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
(1)$\overrightarrow{ a }=(\sqrt3,0,1)$とする。
空間ベクトル$\overrightarrow{ b }, \overrightarrow{ c }$はともに大きさが1であり、
$\overrightarrow{ a }∟\overrightarrow{ b }, \overrightarrow{ b }∟\overrightarrow{ c }, \overrightarrow{ c }∟\overrightarrow{ a }$とする。
$(\textrm{i})p,q,r$を実数とし、$\overrightarrow{ x }=p\overrightarrow{ a }+q\overrightarrow{ b }+r\overrightarrow{ c }$とするとき、
内積$\overrightarrow{ x }・\overrightarrow{ a }$と$\overrightarrow{ x }$の大きさ$|\overrightarrow{ x }|$をp,q,rを用いて表すと、
$\overrightarrow{ x }・\overrightarrow{ a }=\boxed{\ \ ア\ \ },|\ \overrightarrow{ x } \ |=\boxed{\ \ イ\ \ }$である。
$(\textrm{ii})(5,0,z)=s\overrightarrow{ a }+(\cos\theta)\overrightarrow{ b }+(\sin\theta)\overrightarrow{ c }$を満たす実数$s,\theta$が存在するような
実数zは2個あるが、それらを全て求めると$z=\boxed{\ \ ウ\ \ }$である。

2022慶應義塾大学理工学部過去問
投稿日:2022.06.07

<関連動画>

共通テストでめちゃ使えるベクトルの裏技(s, t問題)(公式)

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#センター試験・共通テスト関連#共通テスト#数学(高校生)#数C
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
共通テストで使えるベクトルの裏技説明動画です(s, t問題)
この動画を見る 

【高校数学】 数B-10 ベクトルの成分③

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
2点A(a_1,a_2)、B(b_1,b_2)について
$\overrightarrow{ AB }=$①(____,____)
$|\overrightarrow{ AB }|=$②(____,____)

◎4点、$0(0,0)、A(3,0)、B(-1,2)、C(-2,-4)$について、 次のベクトルを成分で表し、それぞれの大きさを求めよう。

③$\overrightarrow{ OB }$

④$\overrightarrow{ AB }$

⑤$\overrightarrow{ CB }$

⑥$\overrightarrow{ BA }$
この動画を見る 

【数C】ベクトルの基本⑮直線の方程式を求める

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #チャート式#青チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
A(3,5),方向ベクトルd=(1,2)のとき直線の方程式を求めよ。
A(1,3),B(2,4)のとき2点を通る直線の方程式を求めよ。
A(3,2),法線ベクトルd=(4,5)のとき直線の方程式を求めよ。
この動画を見る 

【高校数学】数Ⅲ-45 極座標と極方程式②

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の極座標の点$A,B$の直交座標を求めよ。

①$A\left(3,\dfrac{\pi}{6}\right)$

②$B\left(2,-\dfrac{5}{6}\pi\right)$

次の直交座標の点$C,D$の極座標$(r,\theta)$を求めよ。
ただし、$0\leqq \theta \leqq 2\pi$とする。

③$C(0,-2)$

④$D(\sqrt3,-3)$
この動画を見る 

福田の数学〜慶應義塾大学2024年看護医療学部第2問(1)〜正六角形の位置ベクトル

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ (1)一辺の長さが2の正六角形ABCDEFにおいて、辺CDの中点をMとし、直線BEと直線AMの交点をPとする。このとき、$\overrightarrow{BC}$, $\overrightarrow{AM}$, $\overrightarrow{BP}$をそれぞれ$\overrightarrow{AB}$, $\overrightarrow{AF}$を用いて表すと$\overrightarrow{BC}$=$\boxed{\ \ ク\ \ }$, $\overrightarrow{AM}$=$\boxed{\ \ ケ\ \ }$, $\overrightarrow{BP}$=$\boxed{\ \ コ\ \ }$である。また、$\overrightarrow{AM}$と$\overrightarrow{BP}$の内積$\overrightarrow{AM}・\overrightarrow{BP}$の値は$\boxed{\ \ サ\ \ }$である。
この動画を見る 
PAGE TOP