大学入試問題#723「いつもとタイプが違う」 一橋大学(2023)整数問題 - 質問解決D.B.(データベース)

大学入試問題#723「いつもとタイプが違う」 一橋大学(2023)整数問題

問題文全文(内容文):
$\sqrt{ m }+\sqrt{ n }=\sqrt{ 2023 }$を満たす自然数の組$(m,n)$の個数を求めよ。

出典:2023年一橋大学後期 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\sqrt{ m }+\sqrt{ n }=\sqrt{ 2023 }$を満たす自然数の組$(m,n)$の個数を求めよ。

出典:2023年一橋大学後期 入試問題
投稿日:2024.02.02

<関連動画>

福田の数学〜京都大学2024年理系第3問〜2直線がねじれの位置になるための必要十分条件

アイキャッチ画像
単元: #計算と数の性質#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 座標空間の4点O,A,B,Cは同一平面上にないとする。線分OAの中点をP、線分ABの中点をQとする。実数$x$,$y$に対して、直線OC上の点Xと、直線BC上の点Yを次のように定める。
$\overrightarrow{\textrm{OX}}$=$x\overrightarrow{\textrm{OC}}$, $\overrightarrow{\textrm{BY}}$=$y\overrightarrow{\textrm{BC}}$
このとき、直線QYと直線PXがねじれの位置にあるための$x$,$y$に関する必要十分条件を求めよ。
この動画を見る 

大学入試問題#861「初見では苦しいか!?」 #学習院大学(2017) 視聴者の僚太さんの紹介

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#学習院大学
指導講師: ますただ
問題文全文(内容文):
$a \gt 0,b \gt 0$
$\displaystyle \lim_{ x \to \infty } x \sin(\sqrt{ a^2x^2+b }-ax)$

出典:2017年学習大学
この動画を見る 

#広島市立大学(2016) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#広島市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{1}{2}} \displaystyle \frac{x}{(2x+1)^2} dx$

出典:2016年広島市立大学
この動画を見る 

福田の数学〜神戸大学2022年理系第5問〜指数方程式と整数解

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
a,bを実数、$p$を素数とし、$1 \lt a \lt b$とする。以下の問いに答えよ。

(1)x,y,zを0でない実数とする。$a^x=b^y=(ab)^z$ならば$\frac{1}{x}+\frac{1}{y}=\frac{1}{z}$であることを示せ。
(2)m,nを$m \gt n$を満たす自然数とし、$\frac{1}{m}+\frac{1}{n}=\frac{1}{p}$とする。m,nの値をpを用いて表せ。
(3)m,nを自然数とし、$a^m=b^n=(ab)^p$とする。bの値をa,pを用いて表せ。

2022神戸大学理系過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題080〜京都大学2018年度理系第5問〜曲線の長さと極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#数列の極限#微分法#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 曲線y=$\log x$上の点A(t, $\log t$)における法線上に、点BをAB=1となるようにとる。ただしBのx座標はtより大きい。
(1)点Bの座標(u(t), v(t))を求めよ。また$\left(\frac{du}{dt}, \frac{dv}{dt}\right)$を求めよ。
(2)実数rは0<r<1を満たすとし、tがrから1まで動くときに点Aと点Bが描く曲線の長さをそれぞれ$L_1(r)$, $L_2(r)$とする。このとき、極限$\displaystyle\lim_{r \to +0}(L_1(r)-L_2(r))$を求めよ。

2018京都大学理系過去問
この動画を見る 
PAGE TOP