福田の数学〜北里大学2022年医学部第1問(3)〜不定方程式の解 - 質問解決D.B.(データベース)

福田の数学〜北里大学2022年医学部第1問(3)〜不定方程式の解

問題文全文(内容文):
(3) 等式 $30x-23y=1$を満たす正の整数の組(x, y) のうち、$x+y$ が最小となる
ものは[キ]である。
$A={n|n$ は 600 以下の正の整数であり、30の倍数である}
$B={n|n$ は 600 以下の正の整数であり、 n を 23 で割ると4余る}
とおく。このとき、 AUBに属する正の整数の総和は[ク]である。
また、m を正の整数とし、 $∨m^2 +120$ は整数であるとすると、mのとり得る値は[ヶ],[コ],[サ],[シ]である。

2022北里大学医学部過去問
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(3) 等式 $30x-23y=1$を満たす正の整数の組(x, y) のうち、$x+y$ が最小となる
ものは[キ]である。
$A={n|n$ は 600 以下の正の整数であり、30の倍数である}
$B={n|n$ は 600 以下の正の整数であり、 n を 23 で割ると4余る}
とおく。このとき、 AUBに属する正の整数の総和は[ク]である。
また、m を正の整数とし、 $∨m^2 +120$ は整数であるとすると、mのとり得る値は[ヶ],[コ],[サ],[シ]である。

2022北里大学医学部過去問
投稿日:2022.10.27

<関連動画>

正方形何個できる? 福岡大附属大濠

アイキャッチ画像
単元: #数A#場合の数と確率#図形の性質#場合の数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
縦横等間隔に並ぶ16個の点
4つの点を選んで正方形をつくる。
何通りできる?
*図は動画内参照
福岡大附属大濠高等学校
この動画を見る 

精度90%の検査で陽性だったら90%陽性?答えが直感と違う?慶應(看護)

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
サイコロを3つ振ったら出た目の最小値が2であった.3つの目がどの2つも互いに素である確率を求めよ.

慶應(看護)過去問
この動画を見る 

【理数個別の過去問解説】2021年度東京大学 数学 理科・文科第4問(3)解説

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
東京大学 2021年理科・文科第4問(3)
以下の問いに答えよ。
(1)正の奇数K,Lと正の整数A,BがKA=LBを満たしているとする。Kを4で割った余りがLを4で割った余りと等しいならば、Aを4で割った余りはBを4で割った余りと等しいことを示せ。
(2)正の整数a,bがa>bを満たしているとする。このとき、$A=_{4a+1}C_{4b+1},B=aCb$に対してKA=LBとなるような正の奇数K,Lが存在することを示せ。
(3)a,bは(2)の通りとし、さらにa-bが2で割り切れるとする。$_{4a+1}C_{4b+1}wp4$で割った余りは${}_a\mathrm{C}_b$を4で割った余りと等しいことを示せ。
(4)2021C37を4で割った余りを求めよ。
この動画を見る 

整数問題(自作)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y,n$は自然数
$9x^2-y^2=18^n$を満たす$(x,y)$の組数を$n$で表せ
この動画を見る 

一橋大(類)整数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n^n+1$が7の倍数となる自然数$n$をすべて求めよ.
ただし,$n\leqq 50$である.

一橋大(類)過去問
この動画を見る 
PAGE TOP