999C n が5の倍数になる最小のn - 質問解決D.B.(データベース)

999C n が5の倍数になる最小のn

問題文全文(内容文):
${}_{999} \mathrm{ C }_n$が$5$の倍数となる最小の$n$を求めよ.
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
${}_{999} \mathrm{ C }_n$が$5$の倍数となる最小の$n$を求めよ.
投稿日:2020.10.17

<関連動画>

練習問題10 20広島県教員採用試験(数学:整数問題)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$1000!$の末尾に0が連続して何個並ぶか.
この動画を見る 

333‥‥33が2021の倍数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$333・・・・・・33$のように,すべての位の数が3である数の中には必ず$2021$の倍数があることを示せ.
この動画を見る 

琉球大 剰余 二項定理

アイキャッチ画像
単元: #数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$31^n$を$900$で割った余りが最大になる自然数$n$のうち最小の$n$を求めよ.

1987琉球大過去
この動画を見る 

【数A】整数の性質:√n²+40が自然数となるような自然数nをすべて求めよ。

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\sqrt{n^2+40}$が自然数となるような自然数nをすべて求めよ。
この動画を見る 

京都大学入試問題 3次方程式が整数解を持たない時、解は無理数であることの証明 高校数学

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
方程式$x^3+x-8=0$は
(1)ただ1つの実根を1と2との間にもつことを示せ。

(2)この根は無理数であることを証明せよ。

京大過去問
この動画を見る 
PAGE TOP