問題文全文(内容文):
xy平面上の双曲線
$\frac{x^2}{36}-\frac{y^2}{64}=-1$
の焦点の座標を求めなさい。
次の極限値を求めなさい。
$\displaystyle \lim_{ x \to 1 }\displaystyle \frac{x^2+2x-3}{\sqrt[ 3 ]{ x }-1}$
xy平面上の双曲線
$\frac{x^2}{36}-\frac{y^2}{64}=-1$
の焦点の座標を求めなさい。
次の極限値を求めなさい。
$\displaystyle \lim_{ x \to 1 }\displaystyle \frac{x^2+2x-3}{\sqrt[ 3 ]{ x }-1}$
チャプター:
0:00 問題6の解説
1:57 問題7の解説
単元:
#数学検定・数学甲子園・数学オリンピック等#平面上の曲線#関数と極限#2次曲線#関数の極限#数学検定#数学検定準1級#数学(高校生)#数C#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
xy平面上の双曲線
$\frac{x^2}{36}-\frac{y^2}{64}=-1$
の焦点の座標を求めなさい。
次の極限値を求めなさい。
$\displaystyle \lim_{ x \to 1 }\displaystyle \frac{x^2+2x-3}{\sqrt[ 3 ]{ x }-1}$
xy平面上の双曲線
$\frac{x^2}{36}-\frac{y^2}{64}=-1$
の焦点の座標を求めなさい。
次の極限値を求めなさい。
$\displaystyle \lim_{ x \to 1 }\displaystyle \frac{x^2+2x-3}{\sqrt[ 3 ]{ x }-1}$
投稿日:2024.02.10