福田の数学〜慶應義塾大学2024環境情報学部第1問(2)〜対数不等式 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2024環境情報学部第1問(2)〜対数不等式

問題文全文(内容文):
$
\begin{eqnarray}
実数x, y, zが \\
\left\{
\begin{array}{1}
x > 1, \ y > 1 , \ z > 1\\
log_{x}y + log_{y}x + log_{y}z \leqq 6\\
4xz + 3x - 7y - 5z = -5
\end{array}
\right.
\\を満たしているとき \
x = \frac{\fbox{アイ}}{\fbox{ウエ}}, \
y = \frac{\fbox{オカ}}{\fbox{キク}}, \
z = \frac{\fbox{ケコ}}{\fbox{サシ}},
\end{eqnarray}
$
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$
\begin{eqnarray}
実数x, y, zが \\
\left\{
\begin{array}{1}
x > 1, \ y > 1 , \ z > 1\\
log_{x}y + log_{y}x + log_{y}z \leqq 6\\
4xz + 3x - 7y - 5z = -5
\end{array}
\right.
\\を満たしているとき \
x = \frac{\fbox{アイ}}{\fbox{ウエ}}, \
y = \frac{\fbox{オカ}}{\fbox{キク}}, \
z = \frac{\fbox{ケコ}}{\fbox{サシ}},
\end{eqnarray}
$
投稿日:2024.10.20

<関連動画>

満点必須!対数の証明問題【数学 入試問題】【学習院大学】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\log_{10}2+\log_{10}3$は無理数であることを証明せよ。

学習院大過去問
この動画を見る 

福田の数学〜上智大学2023年理工学部第3問〜対数関数の積分と数学的帰納法

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#数列#数学的帰納法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ $e$を自然定数の底とする。自然数$n$に対して、
$S_n$=$\displaystyle\int_1^e(\log x)^n dx$
とする。
(1)$S_1$の値を求めよ。
(2)すべての自然数$n$に対して、
$S_n$=$a_n e$+$b_n$, ただし$a_n$, $b_n$はいずれも整数
と表されることを証明せよ。
この動画を見る 

練習問題46 岡山大学 対数の性質を利用した不等式の証明 数検準1級 教員採用試験

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#数学検定・数学甲子園・数学オリンピック等#指数関数と対数関数#対数関数#微分とその応用#学校別大学入試過去問解説(数学)#その他#数学検定#数学検定準1級#数学(高校生)#岡山大学#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
実数$a,b,$は
$0 \lt a \lt b$をみたしているとき
$(b+1)^a \lt (a+1)^b$が成り立つことを表せ。

出典:岡山大学
この動画を見る 

【短時間でポイントチェック!!】対数の計算・底の変換公式〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
①$\log_{8}2+\log_{8}4$
②$\log_{3}72-\log_{3}8$
③$\log_{5}\sqrt{125}$
④$\log_{8}16$
⑤$\log_{2}3×\log_{3}2$
この動画を見る 

慶應SFCを目指す仮面浪人女子に数学を教えるよ

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
数学を基礎から解説していきます.
この動画を見る 
PAGE TOP