福田の数学〜千葉大学2024年理系第8問〜4つの円の位置関係と極限 - 質問解決D.B.(データベース)

福田の数学〜千葉大学2024年理系第8問〜4つの円の位置関係と極限

問題文全文(内容文):
図は動画参照

半径$1$、中心$O$の円$C$がある。2つの円$C_1$と$C_2$が次の2つの条件を満たすとする。

・$C_1$と$C_2$はどちらも$C$に内接する。
・$C_1$と$C_2$は互いに外接する。

円$C_1,\ C_2$の中心をそれぞれ$D,\ E$とし、半径をそれぞれ$p,\ q$とする。$\theta= \angle{DOE}$とおく。

(1) $q$を$p$と$\theta$を用いて表せ。

(2) $p$を固定する。$\theta$が$0$に近づくとき、$\dfrac{q}{theta^2}$の極限値を求めよ。

(3) $p= \sqrt{2}-1$のとき、$q$の値を求めよ。

(4) $\theta$が$0$に近づくとき、$\dfrac{q}{p}$の極限値を求めよ。
単元: #数A#図形の性質#関数と極限#数列の極限#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
図は動画参照

半径$1$、中心$O$の円$C$がある。2つの円$C_1$と$C_2$が次の2つの条件を満たすとする。

・$C_1$と$C_2$はどちらも$C$に内接する。
・$C_1$と$C_2$は互いに外接する。

円$C_1,\ C_2$の中心をそれぞれ$D,\ E$とし、半径をそれぞれ$p,\ q$とする。$\theta= \angle{DOE}$とおく。

(1) $q$を$p$と$\theta$を用いて表せ。

(2) $p$を固定する。$\theta$が$0$に近づくとき、$\dfrac{q}{theta^2}$の極限値を求めよ。

(3) $p= \sqrt{2}-1$のとき、$q$の値を求めよ。

(4) $\theta$が$0$に近づくとき、$\dfrac{q}{p}$の極限値を求めよ。
投稿日:2025.07.29

<関連動画>

福田の1.5倍速演習〜合格する重要問題060〜早稲田大学2019年度教育学部第3問〜区分求積と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ (1)m,nを自然数とし、$n \geqq 2$とする。このとき、
$\log\left(1+\displaystyle\frac{n}{m}\right) \lt \displaystyle\sum_{k=m}^{m+n-1}\displaystyle\frac{1}{k} \lt \log\left(1+\displaystyle\frac{n}{m}\right)+\displaystyle\frac{n}{m(m+n)}$
を証明せよ。ただし、$\displaystyle\sum_{k=m}^{m+n-1}\displaystyle\frac{1}{k}=\displaystyle\frac{1}{m}+\displaystyle\frac{1}{m+1}+\cdots+\displaystyle\frac{1}{m+n-1}$とする。
(2)2以上の自然数$n$に対して
$a_n=\displaystyle\sum_{k=1}^n\frac{1}{(2n+k)(n+1-k)}$
$b_n=\displaystyle\frac{\log n}{n}$
とおく。$\displaystyle\lim_{n \to \infty}\frac{a_n}{b_n}$を求めよ。

2019早稲田大学教育学部過去問
この動画を見る 

福田のわかった数学〜高校3年生理系003〜極限(3)

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(3)
$\lim_{n \to \infty}(2^n+3^n)^{\frac{1}{n}}$ を求めよ。
この動画を見る 

福田のわかった数学〜高校3年生理系024〜極限(24)関数の極限、三角関数の極限(4)

アイキャッチ画像
単元: #数Ⅱ#三角関数#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 三角関数の極限(4)
次の極限を求めよ。
(1)$\lim_{x \to 0}x\sin\displaystyle \frac{1}{x}$  (2)$\lim_{x \to -\infty}x\sin\displaystyle \frac{1}{x}$
この動画を見る 

京都大 合成関数 不等式

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a \geqq 2,f(x)=(x+a)(x+2)$
$f(f(x)) \gt 0$がすべての実数$x$に対して成り立つような$a$の範囲を求めよ

出典:2013年京都大学 過去問
この動画を見る 

慶應(医)3次方程式 ほぼ文系知識で解けます Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
慶応義塾大学過去問題
$8x^3-6x+1=0$の3つの解をα,β,γ
(1)0<x<1の範囲にある実数解の個数
(2)$\displaystyle\sum_{n=0}^{\infty}(α^n+β^n+γ^n)$
この動画を見る 
PAGE TOP