福田の数学〜千葉大学2024年理系第8問〜4つの円の位置関係と極限 - 質問解決D.B.(データベース)

福田の数学〜千葉大学2024年理系第8問〜4つの円の位置関係と極限

問題文全文(内容文):
図は動画参照

半径$1$、中心$O$の円$C$がある。2つの円$C_1$と$C_2$が次の2つの条件を満たすとする。

・$C_1$と$C_2$はどちらも$C$に内接する。
・$C_1$と$C_2$は互いに外接する。

円$C_1,\ C_2$の中心をそれぞれ$D,\ E$とし、半径をそれぞれ$p,\ q$とする。$\theta= \angle{DOE}$とおく。

(1) $q$を$p$と$\theta$を用いて表せ。

(2) $p$を固定する。$\theta$が$0$に近づくとき、$\dfrac{q}{theta^2}$の極限値を求めよ。

(3) $p= \sqrt{2}-1$のとき、$q$の値を求めよ。

(4) $\theta$が$0$に近づくとき、$\dfrac{q}{p}$の極限値を求めよ。
単元: #数A#図形の性質#関数と極限#数列の極限#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
図は動画参照

半径$1$、中心$O$の円$C$がある。2つの円$C_1$と$C_2$が次の2つの条件を満たすとする。

・$C_1$と$C_2$はどちらも$C$に内接する。
・$C_1$と$C_2$は互いに外接する。

円$C_1,\ C_2$の中心をそれぞれ$D,\ E$とし、半径をそれぞれ$p,\ q$とする。$\theta= \angle{DOE}$とおく。

(1) $q$を$p$と$\theta$を用いて表せ。

(2) $p$を固定する。$\theta$が$0$に近づくとき、$\dfrac{q}{theta^2}$の極限値を求めよ。

(3) $p= \sqrt{2}-1$のとき、$q$の値を求めよ。

(4) $\theta$が$0$に近づくとき、$\dfrac{q}{p}$の極限値を求めよ。
投稿日:2025.07.29

<関連動画>

数学「大学入試良問集」【17−3① 解けない漸化式とはさみうちの原理】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#岐阜大学#数学(高校生)#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$a_1=2,a_{n+1}=\displaystyle \frac{1}{2}a_n+\displaystyle \frac{1}{a_n}$ $n=1,2,3,・・・$で定義される数列$\{a_n\}$について以下の問いに答えよ。
(1)$a_n \gt \sqrt{ 2 }(n=1,2,3,・・・)$を証明せよ。
(2)$a_{n+1}-\sqrt{ 2 } \lt \displaystyle \frac{1}{2}(a_n-\sqrt{ 2 })(n=1,2,3,・・・)$を証明せよ。
(3)$\displaystyle \lim_{ n \to \infty }a_n$を求めよ。
この動画を見る 

福田のわかった数学〜高校3年生理系010〜極限(10)解けない漸化式の極限

アイキャッチ画像
単元: #数列#漸化式#関数と極限#数列の極限#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(10)
$a_1=2, a_{n+1}=\sqrt{a_n+30}$ のとき、
$\lim_{n \to \infty}a_n$ を調べよ。
この動画を見る 

福田のわかった数学〜高校3年生理系089〜グラフを描こう(11)分数関数、凹凸、漸近線

アイキャッチ画像
単元: #関数と極限#微分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ グラフを描こう(11)

$y=\frac{x^3}{x^2-1}$ のグラフを描け。ただし、凹凸、漸近線も調べよ。
この動画を見る 

約束記号 四天王寺

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: 数学を数楽に
問題文全文(内容文):
$\langle\langle x \rangle\rangle=2x-1$とする
$\langle\langle \quad \langle\langle 2x \rangle\rangle -1 \rangle\rangle=x^2+10$
$x=?$

四天王寺高等学校
この動画を見る 

大学入試問題#598「計算が大変でした」 関西大学(2009) #区分求積法

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#数列の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#関西大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=1}^n \displaystyle \frac{n-k}{n\sqrt{ 3n^2+k^2 }}$

出典:2009年関西大学 入試問題
この動画を見る 
PAGE TOP