問題文全文(内容文):
実数aに対して2つの放物線C1:y=2-x^2, C2:y=x^2-4x+aを考える。C1,C2がy>0で
ある交点を二つ持つようなaの範囲を求めよ。
実数aに対して2つの放物線C1:y=2-x^2, C2:y=x^2-4x+aを考える。C1,C2がy>0で
ある交点を二つ持つようなaの範囲を求めよ。
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
実数aに対して2つの放物線C1:y=2-x^2, C2:y=x^2-4x+aを考える。C1,C2がy>0で
ある交点を二つ持つようなaの範囲を求めよ。
実数aに対して2つの放物線C1:y=2-x^2, C2:y=x^2-4x+aを考える。C1,C2がy>0で
ある交点を二つ持つようなaの範囲を求めよ。
投稿日:2024.12.24





