公立はこだて未来大 方程式の解 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

公立はこだて未来大 方程式の解 Mathematics Japanese university entrance exam

問題文全文(内容文):
$x+y+z=3$
$xy+yz=zx=3$を満たす実数の組$(x,y,z)$は(1,1,1)のみであることを示せ。

出典:2002年公立はこだて未来大学 過去問
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)#公立はこだて未来大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x+y+z=3$
$xy+yz=zx=3$を満たす実数の組$(x,y,z)$は(1,1,1)のみであることを示せ。

出典:2002年公立はこだて未来大学 過去問
投稿日:2019.02.27

<関連動画>

3乗根が綺麗になっちゃった

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a≧\frac{1}{8}$
$\sqrt[3]{a+\frac{a+1}{3}\sqrt{\frac{8a-1}{3}}}+\sqrt[3]{a-\frac{a+1}{3}\sqrt{\frac{8a-1}{3}}}$
の値を求めよ.
この動画を見る 

福田の数学〜早稲田大学2022年理工学部第2問〜条件を満たすm個の2次関数の積でできる2m次方程式の異なる解の総和

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{2}}\ p,q$を相異なる素数とする。次の3条件を満たすxの2次式f(x)を考える。
・係数はすべて整数1で$x^2$の係数は1である。
・$f(1)=pq$である。
・方程式$f(x)=0$は整数解をもつ。
以下の問いに答えよ。
(1)$f(x)$をすべて求めよ。
(2)(1)で求めたものを$f_1(x),f_2(x),\ldots,f_m(x)$とする。2m次方程式
$f_1(x)×f_2(x)×\ldots×f_m(x)=0$
の相異なる解の総和は$p,q$によらないことを示せ。

2022早稲田大学理工学部過去問
この動画を見る 

悠仁さまも受験!箱ヒゲ図 筑波大学附属(改題)2022 入試問題解説100問解説!!56問目

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
1問5点で20問の100点満点のテスト。
8人が受けたときの平均点は?
*図は動画内参照

2022筑波大学附属高等学校
この動画を見る 

2022東海大(医)ドモアブルの定理の基本

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)#東海大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(\sqrt{2+\sqrt2}+\sqrt{2-\sqrt2i})^8$を解け.

2022東海大(医)過去問
この動画を見る 

トルコJr数学オリンピック

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数解$(x,y)$を求めよ.
$2x^2+y^2+7=2(x+1)(y+1)$

トルコJr数学オリンピック
この動画を見る 
PAGE TOP