大学入試問題#302 青山学院大学(2010) #定積分 - 質問解決D.B.(データベース)

大学入試問題#302 青山学院大学(2010) #定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{2\pi}|\sin\ x+\cos2x|dx$

出典:2010年青山学院大学 入試問題
チャプター:

00:00 問題紹介
00:10 本編スタート
06:24 作成した解答①
06:37 作成した解答②
06:48 エンディング

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{2\pi}|\sin\ x+\cos2x|dx$

出典:2010年青山学院大学 入試問題
投稿日:2022.09.06

<関連動画>

福田の数学〜過去の入試問題(期間限定)〜慶應義塾大学理工学部2020第5問〜平面ベクトルと面積比

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\fbox{5}$ 平行四辺形$ABCD$において、$AB=2, BC=3$とし、対角線$AC$の長さを$4$とする。 辺$AB, BC, CD, DA$上にそれぞれ点$E, F, G, H$を$AE=BF=CG=DH=x$を満たすようにとる。ただし、$x$は$0x<2$の範囲を動くとする。さらに、対角線$AC$上に点$P$を$AP=x^2$を満たすようにとる。以下では、平行四辺形$ABCD$の面積を$S$とする。
(1) $\triangle$$AEP$の面積を$T_1$とする。$\frac{T_1}{S}$は、$x$を用いて表すと$\fbox{ テ }$となる。
(2) $\triangle$$EFP$ の面積を$T_2$とする。$\frac{T_2}{S}$は、$x=$$\fbox{ ト }$のとき最大値$\fbox{ ナ }$をとる。
(3) $\triangle$$GHP$の面積を$T_3$とする。$\frac{T_3}{S}$となるのは$x=$$\fbox{ ニ }$のときである。
(4) 点$P$が線分$EH$上にあるのは$x=$$\fbox{ ヌ }$のときである。
この動画を見る 

福田の数学〜陰関数を考える貴重な問題〜明治大学2023年全学部統一Ⅲ第4問〜陰関数のグラフの増減とグラフ

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{4}}$ 座標空間において、2点(-2,0),(2,0)からの距離の積が4であるような点Pの軌跡を考える。点Pの座標を($x$,$y$)とすると、$x$,$y$は次の方程式を満たす。
$y^4$+$\boxed{\ \ ア\ \ }y^2$+$(\boxed{\ \ イ\ \ })^2$=16 ...(1)
方程式(1)が表す曲線を$C$とする。$C$の概形を描くことにしよう。まず、曲線$C$と$x$軸との共有点の$x$座標は$\boxed{\ \ ウ\ \ }$と$±\boxed{\ \ エ\ \ }\sqrt{\boxed{\ \ オ\ \ }}$である。次に、(1)を$y^2$に関する2次方程式とみて解けば、$y^2$≧0 であるので、
$y^2$=$\boxed{\ \ カ\ \ }$+$4\sqrt{\boxed{\ \ キ\ \ }}$ ...(2)
となり、また$x$のとりうる値の範囲は
$-\boxed{\ \ ク\ \ }\sqrt{\boxed{\ \ ケ\ \ }}$≦$x$≦$\boxed{\ \ ク\ \ }\sqrt{\boxed{\ \ ケ\ \ }}$
となる。$x$≧0, $y$≧0とすれば、方程式(2)は0≦$x$≦$\boxed{\ \ ク\ \ }\sqrt{\boxed{\ \ ケ\ \ }}$を定義域とする$x$の関数$y$を定める。このとき、0<$x$$\boxed{\ \ サ\ \ }$のとき共有点はなく、0≦$a$≦$\boxed{\ \ サ\ \ }$のとき共有点がある。
共有点の個数は、$a$=0のとき$\boxed{\ \ シ\ \ }$個、0<$a$<$\boxed{\ \ サ\ \ }$のとき$\boxed{\ \ ス\ \ }$個、$a$=$\boxed{\ \ サ\ \ }$のとき$\boxed{\ \ セ\ \ }$個となる。
$\boxed{\ \ ア\ \ }$、$\boxed{\ \ イ\ \ }$、$\boxed{\ \ カ\ \ }$、$\boxed{\ \ キ\ \ }$の解答群
⓪$x^2+1$ ①$-(x^2+1)$ ②$x^2-1$ ③$-(x^2-1)$ ④$x^2+4$ 

⑤$2(x^2+4)$ ⑥$x^2-4$ ⑦$2(x^2-4)$ ⑧$-(x^2+4)$ ⑨$-2(x^2-4)$ 
この動画を見る 

大学入試問題#724「教科書の例題」 千葉大学(2023) 積分方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$f(x)=x^2+\displaystyle \int_{-1}^{2} (xf(t)-t)dt$を満たす関数$f(x)$を求めよ

出典:2023年千葉大学 入試問題
この動画を見る 

弘前大 3倍角 5倍角 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#三角関数#加法定理とその応用#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$\sin 3x$を$\sin x$で表せ

(2)
$\sin x + \cos x=4\sin x \cos ^2x$を満たす$x$を求めよ


出典:1986年弘前大学 過去問
この動画を見る 

福田の数学〜上智大学2023年TEAP利用型理系第1問(2)〜桁数の評価

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (2)$(2・7・11・13)^{20}$の桁数は$\boxed{\ \ イ\ \ }$である。
この動画を見る 
PAGE TOP