AkiyaMathさんと学ぶ積分計算 Level 2 【難】#定積分 - 質問解決D.B.(データベース)

AkiyaMathさんと学ぶ積分計算 Level 2 【難】#定積分

問題文全文(内容文):
$\displaystyle \int_{-\frac{1}{2}}^{\frac{2}{3}}\displaystyle \frac{dx}{\sqrt{ x^3-3x+2 }}$を求めよ。
チャプター:

00:00 問題掲示
00:25 本編スタート
08:16 作成した解答①
08:29 作成した解答②
08:41 作成した解答③
08:54 エンディング(楽曲提供:兄いえてぃ様)

単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-\frac{1}{2}}^{\frac{2}{3}}\displaystyle \frac{dx}{\sqrt{ x^3-3x+2 }}$を求めよ。
投稿日:2022.07.30

<関連動画>

福田の数学〜中央大学2022年理工学部第3問〜指数関数の接線と囲まれる部分の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
関数 $f(x) = -xe^x$ を考える。曲線$C: y = f(x)$の点(a, f(a)) における接線を$l_a$と
し、接線$l_a$とy軸の交点を $(0, g(a))$ とおく。以下の問いに答えよ。
(1) 接線$l_a$の方程式と$g (a)$を求めよ。
以下、aの関数$g (a)$ が極大値をとるときのaの値をbとおく。
(2) bを求め、点$(b, f(b))$ は曲線Cの変曲点であることを示せ。
(3) 曲線Cの点 $(b, f(b))$ における接線$l_b$と x軸の交点のx座標cを求めよ。さらに、
$c\leqq x\leqq 0$の範囲で曲線Cの概形と接線l_bをxy 平面上に図示せよ。
(4)曲線C、接線$l_b$およびy軸で囲まれた部分の面積Sを求めよ。

2022中央大学理工学部過去問
この動画を見る 

【高校数学】毎日積分40日目【なぜ定積分で面積が求められるの?】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
なぜ定積分で面積が求められるのか解説していきます.
この動画を見る 

大学入試問題#168 広島市立大学(2020) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#広島市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{2}x\sqrt{ 2-x }\ dx$を求めよ。

出典:2020年広島市立大学 入試問題
この動画を見る 

【高校数学】金沢大学2024年の積分の問題をその場で解説しながら解いてみた!毎日積分85日目~47都道府県制覇への道~【㉘石川】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#金沢大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【金沢大学 2024】
次の問いに答えよ。
(1) 関数$f(x)=e^{-x}sinx$と$g(x)=e^{-x}cosx$の導関数$f'(x),g'(x)$を求めよ。
(2) 整数$k$に対し、定積分$\displaystyle \int_{kπ}^{(k+1)π}e^{-x}sinxdx$を求めよ。
(3) 極限$\displaystyle \lim_{n\to \infty}\int_0^{nπ}e^{-x}|sinx|dx$を求めよ。
この動画を見る 

【高校数学】毎日積分13日目【難易度:★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_0^1log\frac{x+2}{x+1}dx$
これを解け.
この動画を見る 
PAGE TOP