福田の数学〜北海道大学2024年文系第3問〜3次関数のグラフと面積 - 質問解決D.B.(データベース)

福田の数学〜北海道大学2024年文系第3問〜3次関数のグラフと面積

問題文全文(内容文):
$\Large{\boxed{3}}$ $a$を0でない実数とする。$C$を$y$=$-x^3$+$x^2$ で表される曲線、$l$を$y$=$a$ で表される直線とし、$C$と$l$は共有点をちょうど2つもつとする。
(1)$a$の値を求めよ。
(2)$C$と$l$の共有点の$x$座標をすべて求めよ。
(3)$C$と$l$で囲まれた図形の面積を求めよ。
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ $a$を0でない実数とする。$C$を$y$=$-x^3$+$x^2$ で表される曲線、$l$を$y$=$a$ で表される直線とし、$C$と$l$は共有点をちょうど2つもつとする。
(1)$a$の値を求めよ。
(2)$C$と$l$の共有点の$x$座標をすべて求めよ。
(3)$C$と$l$で囲まれた図形の面積を求めよ。
投稿日:2024.04.15

<関連動画>

大学入試問題#142 広島市立大学(2014) 不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#広島市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \cos\sqrt{ x }\ dx$を計算せよ。

出典:2014年広島市立大学 入試問題
この動画を見る 

福田の数学〜慶應義塾大学2024総合政策学部第4問〜中がくり抜かれた球の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{4}$点Oを中心とする半径$2$の球から点を中心とする半径$r(0 \lt r\lt 2)$の球をくり抜いてできた立体$V$がある。いま、点Oからおろした垂線の長さが$x(0 \lt x\lt 2)$である平面$P$で立体$V$を切り、2つの立体に分ける。2つの立体のうち、体積の小さい方を$V_{ 1 }$、大きい方を$V_{2}$とする。

(1)平面$P$による立体$V$の切り口の面積が$π(2-r)^2$であるとき、$x=\sqrt{ \boxed{ アイ }r^2+\boxed{ ウエ } }$である。
(2)$(0 \lt x\lt r)$のとき、$V_{1}$の体積は$(r^2+\boxed{ オカ})πx+\frac{\boxed{キク}}{\boxed{ケコ}}πr^3+\frac{\boxed{サシ}}{\boxed{スセ}}π$であり、$r \leqq x\lt2$のとき、$V_{1}$の体積は$\frac{\boxed{ソタ}}{\boxed{チツ}}πr^3+\boxed{テト}πx+\frac{\boxed{ナニ}}{\boxed{ヌネ}}π$である。
(3)$x=r$において、$V_{1}$の体積と$V_{2}$の体積の比が$1:3$になるとき、$r=\boxed{ノハ}+\sqrt{\boxed{ヒフ}}$である。また、$x=\frac{2}{3}r$において$V_{1}$の体積と$V_{2}$の体積の比が$1:3$になるとき、$r=\boxed{ヘホ}+\sqrt{\boxed{マミ}}$である。
この動画を見る 

【数Ⅲ】【積分とその応用】面積12 ※問題文は概要欄

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
曲線$\dfrac{\sqrt{x}}a+\dfrac{\sqrt{y}}b=1$は、直線$\dfrac x a+\dfrac y b=1$と$x$軸、$y$軸で囲まれた三角形を一定の面積の比に分割することを示せ。ただし、$a > 0,b > 0$とする。
この動画を見る 

練習問題31 積分 数検準1級 教採対応

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#積分とその応用#不定積分#定積分#その他#数学検定#数学検定準1級#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \dfrac{\tan^{-1}x+1}{x^2+1}dx$
を計算せよ.
この動画を見る 

福田の数学〜千葉大学2023年第7問〜三角関数と定積分の最大Part1

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#積分とその応用#定積分#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{7}$ 関数
$f(x)$=$\displaystyle\left|\cos x-\sqrt5\sin x-\frac{3\sqrt2}{2}\right|$
について、以下の問いに答えよ。
(1)$f(x)$の最大値を求めよ。
(2)$\displaystyle\int_0^{2\pi}f(x)dx$ を求めよ。
(3)$S(t)$=$\displaystyle\int_t^{t+\frac{\pi}{3}}f(x)dx$ とおく。このとき$S(t)$の最大値を求めよ。
この動画を見る 
PAGE TOP