素因数分解prime factorization - 質問解決D.B.(データベース)

素因数分解prime factorization

問題文全文(内容文):
$ 8027$
これを素因数分解せよ.
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 8027$
これを素因数分解せよ.
投稿日:2022.11.04

<関連動画>

福田の数学〜慶應義塾大学2022年総合政策学部第4問〜折り紙を折ってできる線分、角、面積を求める

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{4}}$一辺の長さが2の正方形の折り紙 ABCD を次の手順にしたがって折る。
(1) A と B、DとCを合わせて ADがBCに重なるように谷折りし、折り目をつけて
開く。AB および DC 上にあるこの谷折り線の端点をそれぞれEおよびFとする。
(2 ) AF が谷折り線になるよう に谷折りし、折り目をつけて開く。
(3) A を谷折り線の端点の1つとして、AB がAF 上に重なるように谷折りし、折り
目をつけて開く。BC上にあるこの谷折り線のもう1つの端点をGとする。
(4) D と A、CとBを合わせてDCがABに重なるように谷折りして、折り目をつけ
る。AD およびBC 上にあるこの谷折り線の端点をそれぞれHおよびIとする。
(5) C と B がいずれもGと重なるように2枚重ねて谷折りし、CIおよびBI 上に折り
目をつけて開く。この折り目の点をそれぞれ」およびKとする (A, E, B, K は
それぞれ D, F, C, J と重なっているため図中には表示していない)
(6) HI を谷折り線とする谷折りを開く (A, E, B, KはそれぞれD, F, C, J と重なって
いるため図中には表示していない)
(7) K を谷折り線の端点の1つとして、JがAB上に重なるように谷折りし、折り目
をつける。AD上にあるこの谷折り線のもう1つの端点をしとし、AB上にある
Jが重なる点をMとする。
(8)KLを谷折り戦とする谷折りを開く(MはJと重なっているため表示していない)
(9)Mを谷折り線の端点の1つとして、AとDがそれぞれBEとCF上にくるように
谷折りし、折り目をつけて開く。DC上にあるこの谷折り線のもう1つ端点を
Nとする。
(10)折るのをやめる。

このとき、
$BG=\boxed{\ \ アイ\ \ }+\sqrt{\boxed{\ \ ウエ\ \ }},JK=\boxed{\ \ オカ\ \ }+\sqrt{\boxed{\ \ キク\ \ }},JM=\boxed{\ \ ケコ\ \ },$

$\cos\angle JKM=\frac{\boxed{\ \ サシ\ \ }+\boxed{\ \ スセ\ \ }\sqrt{\boxed{\ \ ソタ\ \ }}}{\boxed{\ \ チツ\ \ }}$

ここで、$\triangle JKM$の面積を$S_1,\triangle JMN$の面積を$S_2$とすると

$\frac{S_2}{S_1}=\frac{\boxed{\ \ テト\ \ }+\sqrt{\boxed{\ \ ナニ\ \ }}}{\boxed{\ \ ヌネ\ \ }}$
となる。
※(1)~(10)の画像は動画参照

2022慶應義塾大学総合政策学部過去問
この動画を見る 

【超難問】3×2×1=??が難しすぎる世界

アイキャッチ画像
単元: #数Ⅰ#数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
深読みしすぎた$3 \times 2 \times 1$の計算
この動画を見る 

【短時間でポイントチェック!!】絶対値を含む定積分〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
$\int_1^3{|x^2-4|}dx$
この動画を見る 

ただの因数分解2021関西医科大

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
因数分解せよ.
$(x^2-15x-2)(x^2+15x-2)-5x^2+2021$

2021関西医科大過去問
この動画を見る 

【どこが出る??】学年1位を取り続けた人間が中間テストで出やすいところを17分で全て紹介します!〔高校数学、数学〕

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):

1.以下の文字式を[]内の文字について降べきの順に整理しなさい
 (1)$a^3+a^2+a+4a^4+6a^6-3a^4$ [a]
 (2)$x^2+2y^2+z^2-xy+yz+zx$ [z]

2.$A=x^2-ax+1,B=a^2+3ax+2$のとき$A-${$3B+(A-B)$}を計算しなさい。



1.次の式を計算しなさい
 $(-2ab^3)^3$

2.次の式を展開しなさい
 (1)$(a-3b)^2$
 (2)$(2+3a)(2-3a)$
 (3)$(a+5)(a-6)$

3.次の式を展開しなさい
 (1)$(x^2+2x+1)^2$
 (2)$(4a^2+9)(2a-3)(2a+3)$



1.次の式を因数分解しなさい
 (1)$2a^2x-4ab$
 (2)$x^2+6x+9$
 (3)$x^2-5x+6$
 (4)$16a^2-9b^2$

2.次の式を因数分解しなさい
 (1)$x^2+x+\displaystyle \frac{1}{4}$
 (2)$4x^2-16$



1.次の式を因数分解しなさい
 (1)$2x^2-5x-3$
 (2)$9x^2+3ab-2b^2$
 (3)$3x^2-11ab-4b^2$
 (4)$8x^2-14xy-15y^2$

2.次の式を因数分解しなさい
 (1)$4a^2-b^2-2bc-c^2$
 (2)$(x+y+1)(x+y+3)-15$
 (3)$2x^2-2y^2+3xy+x+2y$
 (4)$(x+y)^2-4(x+y)+4$



1.次の式を展開しなさい
 (1)$(2x-1)^3$
 (2)$(2x+3)(4x^2+6x+9)$

2.次の式を因数分解しなさい
 (1)$1-8a^3$
 (2)$216x^3+125y^3$



1.次の循環小数を分数で表せ
 (1)$0.\dot{ 9 }$
 (2)$0.\dot{ 8 }\dot{ 3 }$



1.次の値を求めなさい
 (1)$|\sqrt{ 3 }-\sqrt{ 5 }|$
 (2)$|1|-|-2|$
 (3)$|\sqrt{ 2 }+\sqrt{ 3 }||\sqrt{ 2 }-\sqrt{ 3 }|$

2.次の値を求めなさい
 (1)$\sqrt{ 32 }+\sqrt{ 128 }$
 (2)$(2+\sqrt{ 2 })^2$
 (3)$\sqrt{ 3+2\sqrt{ 2 } }$



1.次の式を簡単にしなさい
 (1)$\displaystyle \frac{2}{\sqrt{ 5 }}$

 (2)$\displaystyle \frac{1+\sqrt{ 6 }}{\sqrt{ 3 }}$

 (3)$\displaystyle \frac{2-\sqrt{ 2 }}{2+\sqrt{ 2 }}$


2.$2\sqrt{ 2 }$の整数部分を$a$,小数部分を$b$とするとき、次の式の値を求めなさい
 (1)$a$
 (2)$b$
 (3)$\displaystyle \frac{a}{b}$



1.$x=\displaystyle \frac{2-\sqrt{ 2 }}{2+\sqrt{ 2 }},y=\displaystyle \frac{2+\sqrt{ 2 }}{2-\sqrt{ 2 }}$のとき、次の式の値を求めなさい
 (1)$x+y,xy$
 (2)$x^2+y^2$
 (3)$x^3+y^3$



1.$a \gt b$のとき、次の□にあてはまる不等号を入れなさい。
 (1)$-2a+5□-2b+5$
 (2)$3a□3b$


2.次の不等式を解きなさい
 (1)$5x+6 \lt 11$
 (2)$-6x+1 \geqq 19$
 (3)$3(2x+1) \gt -(4x+5)+2$



1.次の連立不等式を解きなさい
 (1)$\begin{eqnarray}
\left\{
\begin{array}{l}
3x + 2 \lt 9-x \\
x + 4 \geqq 3x
\end{array}
\right.
\end{eqnarray}$

 (2)$3x-9 \lt x-3 \lt 6x+7$
 (3)$0.2x-0.1 \leqq 0.1x+0.7 \lt -0.1x+2.1$



1.次の等式と不等式を解きなさい
 (1)$|2x-5|=3$
 (2)$|3x-1| \lt 1$
 (3)$|3x-2| \geqq x+2$



1.以下の集合に関する問に答えなさい
 (1)3以下の自然数からなる集合$A$を書き並べて表しなさい
 (2)正の偶数からなる集合$B$を式を用いた形で表せ
 (3)1けたの4の倍数からなる集合$C$の部分集合をすべて書きなさい

2.$D=${$x|x$は$1$けたの奇数}とするとき、次の□に$ \in $または$ \notin $を入れなさい
 (1)$2□D$
 (2)$7□D$
 (3)$13□D$



1.全体集合$U=${$1,2,3,4,5,6,7,8,9$}の部分集合$A,B$について、
 $A=${$1,2,4,6,8$}
 $B=${$1,3,6,9$}
 のとき、次の集合を求めなさい
 (1)$A \cap B$
 (2)$A \cup B$
 (3)$\overline{A \cap B}$
 (4)$\overline{\overline{A} \cup B}$



1.次の命題の真偽を調べなさい
 (1)実数$a$について$a \geqq 2$ならば$a \gt 0$
 (2)自然数$m,n$について、$mn$が偶数ならば$m,n$はともに偶数

2.$n^2$が$3$の倍数ならば、$n$は$3$の倍数であることを証明しなさい
この動画を見る 
PAGE TOP