【高校数学】円順列例題2題~とりあえずこれだけ~ 1-7.5【数学A】 - 質問解決D.B.(データベース)

【高校数学】円順列例題2題~とりあえずこれだけ~ 1-7.5【数学A】

問題文全文(内容文):
1⃣
6等分した円の各部分を6色の絵の具をすべて使って塗り分ける方法は何通りあるか。


2⃣
(1)男子2人、女子8人が円形のテーブルの周りに並ぶ
  (ア)男子が向かい合う並び方は何通りあるか
  (イ)男子が隣り合う並び方は何通りあるか

(2)9人のうち5人を選んで円形に並べる方法は何通りあるか
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
6等分した円の各部分を6色の絵の具をすべて使って塗り分ける方法は何通りあるか。


2⃣
(1)男子2人、女子8人が円形のテーブルの周りに並ぶ
  (ア)男子が向かい合う並び方は何通りあるか
  (イ)男子が隣り合う並び方は何通りあるか

(2)9人のうち5人を選んで円形に並べる方法は何通りあるか
投稿日:2020.05.19

<関連動画>

ガチャ問題 東大大島さんと数学

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
ガチャ問題に関して解説していきます.
この動画を見る 

なるほど!コメント欄は勉強になります

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
1~nの自然数から3つ選ぶ.
3の数のどの2つも連続でない確率を求めよ.

2021近畿大(医)
この動画を見る 

【数A】【場合の数】約数の個数と総和 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題28
次の数の正の約数の個数と、その約数の総和を求めよ。
(1)$5・2^3$   (2)$108$   (3)$540$

問題29
2桁の自然数のうち、各位の数の積が偶数になる自然数は何個あるか。
この動画を見る 

福田の数学〜青山学院大学2022年理工学部第1問〜サイコロの目の約数倍数の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
1個のさいころを3回投げるとき、出た目を順にX_1,X_2,X_3とする。
また、$Y=\frac{X_2X_3}{X_1}$とする。
(1)$X_1=2$のとき、Yが整数となる確率は$\frac{\boxed{ア}}{\boxed{イ}}$である。

(2)$X_1=3$のとき、Yが整数となる確率は$\frac{\boxed{ウ}}{\boxed{エ}}\ である。

(3)$X_1=4$のとき、Yが整数となる確率は$\frac{\boxed{オ}}{\boxed{カキ}}$である。

(4)Yが整数となる確率は$\frac{\boxed{クケ}}{\boxed{コサ}}$である。

2022青山学院大学理工学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2023年理工学部第3問〜確率と漸化式(難問)Part2

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 何も入っていない2つの袋A,Bがある。いま、「硬貨を1枚投げて表が出たら袋A、裏が出たら袋Bを選び、以下のルールに従って選んだ袋の中に玉を入れる」
という操作を繰り返す。
ルール
・選んだ袋の中に入っている玉の数がもう一方の袋の中に入っている玉の数より多いか、2つの袋の中に入っている玉の数が同じとき、選んだ袋の中に玉を1個入れる。
・選んだ袋の中に入っている玉の数がもう一方の袋の中に入っている玉の数より少ないとき、選んだ袋の中に入っている玉の数が、もう一方の袋の中に入っている玉の数と同じになるまで選んだ袋の中に玉をいれる。

たとえば、上の操作を3回行ったとき、硬貨が順に表、表、裏と出たとすると、
A,B2つの袋の中の玉の数は次のように変化する。
A:0個 B:0個 → A:1個 B:0個 → A:2個 B:0個 → A:2個 B:2個
(1)4回目の操作を終えたとき、袋Aの中に3個以上の玉が入っている確率は$\boxed{\ \ カ\ \ }$である。また、4回目の操作を終えた時点で袋Aの中に3個以上の玉が入っているという条件の下で、7回目の操作を終えたとき袋Bの中に入っている玉の数が3個以下である条件付き確率は$\boxed{\ \ キ\ \ }$である。
(2)$n$回目の操作を終えたとき、袋Aの中に入っている玉の数のほうが、袋Bの中に入っている玉の数より多い確率を$p_n$とする。
$p_{n+1}$を$p_n$を用いて表すと$p_{n+1}$=$\boxed{\ \ ク\ \ }$となり、これより$p_n$を$n$を用いて表すと$p_n$=$\boxed{\ \ ケ\ \ }$となる。
(3)$n$回目($n$≧4)の操作を終えたとき、袋Aの中に$n-1$個以上の玉が入っている確率は$\boxed{\ \ コ\ \ }$であり、$n-2$個以上の玉が入っている確率は$\boxed{\ \ サ\ \ }$である。
この動画を見る 
PAGE TOP