難易度バリ高の極限 by 餃子n人前さん ※作成者の解答を参考に動画を作成しています。 - 質問解決D.B.(データベース)

難易度バリ高の極限 by 餃子n人前さん ※作成者の解答を参考に動画を作成しています。

問題文全文(内容文):
$a_1=1,$ $a_{n+1}+a_n=\displaystyle \frac{1}{n}$のとき、
$\displaystyle \lim_{ n \to \infty } |na_n|$を求めよ
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a_1=1,$ $a_{n+1}+a_n=\displaystyle \frac{1}{n}$のとき、
$\displaystyle \lim_{ n \to \infty } |na_n|$を求めよ
投稿日:2024.09.04

<関連動画>

【高校数学】数Ⅲ-56 無理不等式とグラフ

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の不等式を解け。

①$\sqrt{x-1} \gt x-3$

②$\sqrt{-2x+7} \leqq -x+2$
この動画を見る 

福田の数学〜慶應義塾大学理工学部2025第1問(3)〜逆関数の微分

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(3)$f(x)$を微分可能な関数とし、

$g(x)=x^3+x$とする。

関数$g(x)$は微分可能な逆関数$g^{-1}(x)$をもつ。

定数$t$に対して、関数$t^2x^2-f(g^{-1}(x))$は

$x=t^3+t$で極値をとるとする。

このとき、$f'(t)$を$t$の多項式で表すと$f'(t)=\boxed{オ}$となる。

次に、任意の定数$t$に対して、関数$t^2x^2-f(g^{-1}(x))$は

$x=t^3+t$で極値をとるとする。

このとき、$f(0)=-2$ならば$f(1)=\boxed{カ}$である。

$2025$年慶應義塾大学理工学部過去問題
この動画を見る 

東工大 極限 東大大学院 数学科卒 杉山さん

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$自然数
半径$\displaystyle \frac{1}{n}$の円を重ならないように、半径1の円に外接させる。
外接する円の最大個数を$a_{n}$とする。
$\displaystyle \lim_{ n \to \infty }\displaystyle \frac{a_{n}}{n}$を求めよ

出典:1992年東京工業大学 過去問
この動画を見る 

【数Ⅲ】【関数と極限】a₁=1/35、1/an+₁=1/an +8n+20によって定められる数列{an}について、次の問いに答えよ。(1) anをnの式で表せ。(2) 無限級数Σanの和を求めよ。

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
数列 $\{a_n\}$ は以下のように定められる数列について、次の問いに答えよ

$a_1 = \frac{1}{35}$,$\quad \frac{1}{a_{n+1}} = \frac{1}{a_n} + 8n + 20 \quad$ $(n = 1, 2, 3, \ldots)$

(1)$a_n$を$n$ の式で表せ。
(2)無限級数 $\displaystyle \sum_{n=1}^{\infty} a_n$ の和を求めよ。
この動画を見る 

産業医科大 区分求積法を使わなくても出せるよ

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#積分とその応用#数列の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数B#数Ⅲ#産業医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty }\dfrac{1^4+2^4+3^4+・・・・+n^4}{n^5}$
これを求めよ。

産業医科大過去問
この動画を見る 
PAGE TOP