青山学院大 微分の基礎 - 質問解決D.B.(データベース)

青山学院大 微分の基礎

問題文全文(内容文):
青山学院大学過去問題
$C:y=x^2$
A(-1,1),B(4,16)
放物線C上にx座標が
$t(-1<t<4)$である点P
直線AB上にx座標がtである点Qととる。
△APQの面積の最大値とそのときのtの値
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#青山学院大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
青山学院大学過去問題
$C:y=x^2$
A(-1,1),B(4,16)
放物線C上にx座標が
$t(-1<t<4)$である点P
直線AB上にx座標がtである点Qととる。
△APQの面積の最大値とそのときのtの値
投稿日:2023.06.16

<関連動画>

【数Ⅱ】【微分法と積分法】接線で囲まれた面積 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
放物線$y=x^2-6x+7$と、この放物線上の点$(4,-1),(0,7)$における接線で囲まれた図形の面積を求めよ。
この動画を見る 

球の体積、表面積 中学生にも納得のいく方法で。 積分でも出します

アイキャッチ画像
単元: #数学(中学生)#中1数学#数Ⅱ#空間図形#微分法と積分法#面積、体積#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
球の表面積、体積の公式がなぜそうなるのかわかりやすく解説します!
この動画を見る 

【数Ⅱ】【微分法と積分法】面積が一定になることを示す ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
放物線y=x²+4上の点Pにおける放物線の接線と放物線y=x²で囲まれた図形の面積は、点Pの選び方に関係なく一定であることを示せ。
この動画を見る 

高専数学 微積I #211 体積

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
半径$r$の直円柱を底面の直径$AB$を通り
底面と$\dfrac{\pi}{6}$の角をなす平面で切るとき,
底面と平面の間の部分の体積$V$を求めよ.
この動画を見る 

【数Ⅱ】微分法と積分法:x軸の周りに1回転してできる回転体の体積の考え方! 次の直線で囲まれた図形をx軸の周りに1回転してできる回転体の体積を求めよ。y=2x+3,x=0,x=2,x軸

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の直線で囲まれた図形をx軸の周りに1回転してできる回転体の体積を求めよ。
y=2x+3
x=0
x=2
x軸
この動画を見る 
PAGE TOP