大学入試問題#720「正面突破はしんどい?」 電気通信大学(2023) y軸回転体 - 質問解決D.B.(データベース)

大学入試問題#720「正面突破はしんどい?」 電気通信大学(2023) y軸回転体

問題文全文(内容文):
$0 \leq x \leq 1$で定まる関数
$f(x)=\sqrt{ 1-x^2 }+\displaystyle \frac{x}{2}-1$において、$y=f(x)$と$x$軸で囲まれた部分を、$y$軸の周りに1回転して得られる体積$V$を求めよ。

出典:2023年電気通信大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東京電機大学
指導講師: ますただ
問題文全文(内容文):
$0 \leq x \leq 1$で定まる関数
$f(x)=\sqrt{ 1-x^2 }+\displaystyle \frac{x}{2}-1$において、$y=f(x)$と$x$軸で囲まれた部分を、$y$軸の周りに1回転して得られる体積$V$を求めよ。

出典:2023年電気通信大学 入試問題
投稿日:2024.01.30

<関連動画>

大学入試問題#18 東北大学(2020) 数列

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$a_1=1,\ a_2=3$
$a_{n+2}a_n=2a_{n+1}^2$のとき
一般項$a_n$を求めよ。

出典:2020年東北大学 入試問題
この動画を見る 

福田の数学〜上智大学2021年TEAP利用理系第1問(3)〜非回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (3)不等式
$1 \leqq z \leqq 4,\ \frac{x^2}{z^2}+4z^4y^2 \leqq 1$
が表す座標空間内の領域の体積は$\boxed{\ \ え\ \ }$である。

$\boxed{\ \ え\ \ }$の選択肢:
$(\textrm{a})\frac{3\pi}{2}  (\textrm{b})3\pi  (\textrm{c})\frac{3\pi^2}{2}  (\textrm{d})3\pi^2$
$(\textrm{e})\pi\log 2  (\textrm{f})\frac{\pi\log 2}{2}  (\textrm{g})3\pi^2\log 2$  

2021上智大学理系過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年薬学部第1問(1)〜複素数の計算とド・モアブルの定理

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
(1)整数a,bは等式$(a+bi)^3=-16+16i$を満たす。ただし、iは虚数単位とする。
$(\textrm{i})a=\boxed{\ \ ア\ \ }, b=\boxed{\ \ イ\ \ }$である。
$(\textrm{ii})\frac{i}{a+bi}-\frac{1+5i}{4}$を計算すると$\boxed{\ \ ウ\ \ }$である。

2022慶應義塾大学薬学部過去問
この動画を見る 

福田の数学〜上智大学2024TEAP利用型文系第2問〜2点の移動に関する確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
表と裏が出る確率がそれぞれ $\frac{1}{2}$ である硬貨がある。座標平面において、原点 $(0,0)$ に置かれた点 $\mathrm{A}$ および座標 $(1,0)$ に置かれた点 $\mathrm{B}$ を、硬貨を $1$ 回投げるごとに以下の規則 $(R)$ に従って動かし、 $n$ 回硬貨を投げた直後における点 $\mathrm{A,B}$ の位置について考える。
規則 $(R)$:
・表が出たとき、 $\mathrm{A}$ は動かさず、 $\mathrm{B}$ は $\mathrm{A}$ を中心に反時計回りに $90^{\circ}$ 回転した位置に動かす。
・裏が出たとき、$\mathrm{B}$ は動かさず、 $\mathrm{A}$ は $\mathrm{B}$ を中心に反時計回りに $90^{\circ}$ 回転した位置に動かす。
$(1)$ $n=10$ のとき、$\overrightarrow{\mathrm{AB}}=(\fbox{タ},\fbox{チ})$
$(2)$ $n=3$ のとき、 $\mathrm{A}$ が位置することが可能な座標の総数は $\fbox{ツ}$ である。
$(3)$ $n=4$ のとき、 $\mathrm{A}$ が原点にある確率は $\displaystyle \frac{\fbox{テ}}{\fbox{ト}}$ であり、 $\mathrm{A}$ が $x$ 軸上にある確率は $\displaystyle \frac{\fbox{ナ}}{\fbox{ニ}}$ である。
$(4)$ $n=8$ のとき、 $\mathrm{A}$ が原点にある確率は $\displaystyle \frac{\fbox{ヌ}}{\fbox{ネ}}$ であり、 $\mathrm{A}$ が $x$ 軸上にある確率は $\displaystyle \frac{\fbox{ノ}}{\fbox{ハ}}$ である。
この動画を見る 

大阪大 整数問題 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
'13大阪大学過去問題
$n+1,n^3+3,n^5+5,n^7+7$
すべてが素数となるような自然数nは存在しないことを示せ
この動画を見る 
PAGE TOP