場合の数 神戸大 東大 - 質問解決D.B.(データベース)

場合の数 神戸大 東大

問題文全文(内容文):
和が$30$となる3つの自然数の組み合わせは何通りか.

和が$6m$となる3つの非負整数の組み合わせは何通りか.

2020神戸大東大過去問
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
和が$30$となる3つの自然数の組み合わせは何通りか.

和が$6m$となる3つの非負整数の組み合わせは何通りか.

2020神戸大東大過去問
投稿日:2020.04.16

<関連動画>

福田のわかった数学〜高校1年生086〜確率(6)じゃんけんの確率(2)

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{A}$ 確率(6) じゃんけん(2)
4人でじゃんけんをして負けたもの
から抜けていく。3回で1人の勝者
が決まる確率を求めよ。 
この動画を見る 

トーナメント表の対戦の組み合わせ (勝ち上がりの対戦は考慮しません!!)B

アイキャッチ画像
単元: #数学(中学生)#数A#場合の数と確率#場合の数#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
A,B,C,D,Eの5チームがトーナメント表をもとに対戦する組み合わせは何通り?
*図は動画内参照
この動画を見る 

福田の数学〜青山学院大学2022年理工学部第1問〜サイコロの目の約数倍数の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
1個のさいころを3回投げるとき、出た目を順にX_1,X_2,X_3とする。
また、$Y=\frac{X_2X_3}{X_1}$とする。
(1)$X_1=2$のとき、Yが整数となる確率は$\frac{\boxed{ア}}{\boxed{イ}}$である。

(2)$X_1=3$のとき、Yが整数となる確率は$\frac{\boxed{ウ}}{\boxed{エ}}\ である。

(3)$X_1=4$のとき、Yが整数となる確率は$\frac{\boxed{オ}}{\boxed{カキ}}$である。

(4)Yが整数となる確率は$\frac{\boxed{クケ}}{\boxed{コサ}}$である。

2022青山学院大学理工学部過去問
この動画を見る 

なるほど!コメント欄は勉強になります

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
1~nの自然数から3つ選ぶ.
3の数のどの2つも連続でない確率を求めよ.

2021近畿大(医)
この動画を見る 

福田の数学〜慶應義塾大学2021年環境情報学部第3問〜多面体の面の色の変化と確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$ 
(1)各面が白色あるいは黒色で塗られた正四面体について、いずれか1つの面を等確率$\dfrac{1}{4}$で選択し、選択した面を除いた3つの面の色を白色であれば黒色に、黒色であれば白色に塗りなおす試行を繰り返す。正四面体の全てが白色の状態から開始するとき
$(\textrm{a})$2つの面が白色、2つの面が黒色になる最小の試行回数は$\boxed{\ \ アイ\ \ }$であり、この試行回数で同状態が実現する確率は$\dfrac{\boxed{\ \ ウエ\ \ }}{\boxed{\ \ オカ\ \ }}$である。
$(\textrm{b})$すべての面が黒色になる最小の試行回数は$\boxed{\ \ キク\ \ }$であり、この試行回数で同状態が実現する確率は$\dfrac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシ\ \ }}$である。

(2)各面が白色あるいは黒色で塗られた立方体について、いずれか1つの面を等確率$\dfrac{1}{6}$で選択し、選択した面を除いた5つの面の色を白色であれば黒色に、黒色であれば白色に塗り直す試行をくり返す。立方体のすべての面が白色の状態から開始するとき
$(\textrm{a})$3つの面が白色、3つの面が黒色になる最小の試行回数は$\boxed{\ \ スセ\ \ }$であり、この試行回数で同状態が実現する確率は$\dfrac{\boxed{\ \ ソタ\ \ }}{\boxed{\ \ チツ\ \ }}$である。
$(\textrm{b})$すべての面が黒色になる最小の試行回数は$\boxed{\ \ テト\ \ }$であり、この試行回数で同状態が実現する確率は$\dfrac{\boxed{\ \ ナニヌ\ \ }}{\boxed{\ \ ネノハ\ \ }}$である。

慶應義塾大学2021年環境情報学部第3問
この動画を見る 
PAGE TOP