整数問題 早稲田実業 - 質問解決D.B.(データベース)

整数問題 早稲田実業

問題文全文(内容文):
$c^2+4a^2+b^2 =65$を満たす正の整数a,b,cの組を求めよ。

早稲田実業学校
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$c^2+4a^2+b^2 =65$を満たす正の整数a,b,cの組を求めよ。

早稲田実業学校
投稿日:2021.05.07

<関連動画>

【その場で「考える力」を身に付ける!】整数:大阪星光学院高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
2数$a,b$の最大公約数を$[a\odot b]$と表すと・・・
$[1\odot 2]+[2\odot 3]+[3\odot 4]+・・・+[100\odot 101]=\Box$であり,
$[1\odot 3]+[2\odot 4]+[3\dot 5]+・・・+[99\odot 101]+[100\odot 102]=\box$である.

大阪星光高校過去問
この動画を見る 

【カイホウの検討…!】整数:文教大学付属高等学校~全国入試問題解法

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
連続する4つの自然数がある。それぞれの数を2乗したものを足すと294になった。このとき4つの自然数の中で最も小さいものを答えなさい。
この動画を見る 

大阪大 積分のフリした整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b,c$を整数とする.
$\displaystyle \int_{a}^{c}(x^2+bx)dx=\displaystyle \int_{b}^{c}(x^2+ax)dx$
①$a\neq b$なら$c$は3の倍数であることを示せ.
②$a\lt b,c=3600$ 整数$(a,b)$は何組であるか?

2021大阪大過去問
この動画を見る 

【理数個別の過去問解説】1976年度東京工業大学 数学 第1問解説

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
p(x)をxに関する3次式とする。$x^4$と$x^5$をp(x)で割った余りは等しくて、0ではないとする。
xの整式f(x)がp(x)で割り切れず、xf(x)はp(x)で割り切れるとき、 f(x)をp(x)で割った余りr(x)を求めよ。
ただし、r(x)の最高次係数は1となるものとする。
この動画を見る 

中学生向け整数問題その3

アイキャッチ画像
単元: #中2数学#式の計算(単項式・多項式・式の四則計算)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数A,Bの最大公約数が6で最小公倍数は432である.(A,B)をすべて求めよ.
この動画を見る 
PAGE TOP