福田のおもしろ数学115〜円外の点から引いた2本の接線の接点を結んでできる直線の方程式 - 質問解決D.B.(データベース)

福田のおもしろ数学115〜円外の点から引いた2本の接線の接点を結んでできる直線の方程式

問題文全文(内容文):
円$x^2$+$y^2$=$r^2$ 上に円外の点($a$,$b$)から2本の接線を引く。このとき2接点P,Qを結ぶ直線の方程式は$ax$+$by$=$r^2$ であることを証明せよ。
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
円$x^2$+$y^2$=$r^2$ 上に円外の点($a$,$b$)から2本の接線を引く。このとき2接点P,Qを結ぶ直線の方程式は$ax$+$by$=$r^2$ であることを証明せよ。
投稿日:2024.04.18

<関連動画>

【高校数学】 数Ⅱ-64 円と直線③

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎3点A(-2、-1)、B(-3、2)、C(1、0)がある。

①3点、A、B、Cを通る円の方程式を求めよう。

②△ABCの外接円の半径を求めよう。

③△ABCの外心の座標を求めよう。
この動画を見る 

福田のおもしろ数学405〜√2+√3が円周率πよりも大きいことの証明

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\sqrt2 + \sqrt3 \gt \pi$

を証明して下さい。
この動画を見る 

福田のわかった数学〜高校2年生028〜定点通過(直線群、円群)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 定点通過(直線群・円群)\\
放物線y=x^2+5x-4 と\\
y=-x^2+ax+2 の2つの交点を\\
通る直線をlとする。lが点(2,3)を\\
通るときaの値とlの方程式を求めよ。
\end{eqnarray}
この動画を見る 

福田の数学〜慶應義塾大学2023年医学部第4問PART1〜円に内接する円の性質

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#複素数平面#周角と円に内接する四角形・円と接線・接弦定理#図形と方程式#円と方程式#微分とその応用#複素数平面#図形への応用#微分法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 座標平面において原点Oを中心とする半径1の円を$C_1$とし、$C_1$の内部にある第1象限の点Pの極座標を(r, θ)とする。さらに点Pを中心とする円$C_2$が$C_1$上の点Qにおいて$C_1$に内接し、x軸上の点Rにおいてx軸に接しているとする。
また、極座標が(1, π)である$C_1$上の点をAとし、直線AQのy切片をtとする。
(1)rをθの式で表すとr=$\boxed{\ \ あ\ \ }$となり、tの式で表すとr=$\boxed{\ \ い\ \ }$となる。
(2)円$C_2$と同じ半径をもち、x軸に関して円$C_2$と対称な位置にある円$C'_2$の中心P'とする。三角形POP'の面積はθ=$\boxed{\ \ う\ \ }$のとき最大値$\boxed{\ \ え\ \ }$をとる。θ=$\boxed{\ \ う\ \ }$は条件t=$\boxed{\ \ お\ \ }$と同値である。
(3)円$C_1$に内接し、円$C_2$と$C'_2$の両方に外接する円のうち大きい方を$C_3$とする。円$C_3$の半径bをtの式で表すとb=$\boxed{\ \ か\ \ }$となる。
(4)3つの円$C_2$, $C'_2$, $C_3$の周の長さの和はθ=$\boxed{\ \ き\ \ }$の最大値$\boxed{\ \ く\ \ }$をとる。

2023慶應義塾大学看護医療学部過去問
この動画を見る 

福田のおもしろ数学056〜折り返し問題〜半円を折り返す

アイキャッチ画像
単元: #数A#数Ⅱ#図形の性質#方べきの定理と2つの円の関係#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
図は半円 O を点 C で接するように折り返したもので EF はその折り目である。EF と AB の交点を D とする。 $AC = 6 , BC = 2$ のとき、 AD の長さを求めよ。
※図は動画内参照
この動画を見る 
PAGE TOP