福田のおもしろ数学115〜円外の点から引いた2本の接線の接点を結んでできる直線の方程式 - 質問解決D.B.(データベース)

福田のおもしろ数学115〜円外の点から引いた2本の接線の接点を結んでできる直線の方程式

問題文全文(内容文):
円$x^2$+$y^2$=$r^2$ 上に円外の点($a$,$b$)から2本の接線を引く。このとき2接点P,Qを結ぶ直線の方程式は$ax$+$by$=$r^2$ であることを証明せよ。
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
円$x^2$+$y^2$=$r^2$ 上に円外の点($a$,$b$)から2本の接線を引く。このとき2接点P,Qを結ぶ直線の方程式は$ax$+$by$=$r^2$ であることを証明せよ。
投稿日:2024.04.18

<関連動画>

福田の数学〜慶應義塾大学2021年総合政策学部第3問〜円と円の位置関係

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$
図のように(※動画参照)円Aの中に、5つの円Bと4つの円Cが含まれている。
中心の円Bは他の4つの円Bに接し、他の4つの円Bのそれぞれは中心の円Bと円A
と2つの円Cに接している。4つの円Cのそれぞれは円Aと2つの円Bに接している。
いま、円Bの半径を1とすると、円Cの半径は
$\frac{\boxed{\ \ アイ\ \ }+\boxed{\ \ ウエ\ \ }\sqrt{\boxed{\ \ オカ\ \ }}}{\boxed{\ \ キク\ \ }}$
である。

2021慶應義塾大学総合政策学部過去問
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜軌跡(5)動点が2個ある場合の軌跡、高校2年生

アイキャッチ画像
単元: #数A#数Ⅱ#図形の性質#内心・外心・重心とチェバ・メネラウス#図形と方程式#点と直線#円と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 定点$A(2,0),B(4,0)$と円$C:x^2+y^2=9$ がある。
動点$P$が円$C$上を動くとき、$\triangle ABP$の重心$G$の軌跡を求めよ。
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜円の方程式(2)三角形の外心、高校2年生

アイキャッチ画像
単元: #数A#数Ⅱ#図形の性質#内心・外心・重心とチェバ・メネラウス#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 3点$A(-2,6),B(1,-3),C(5,-1)$を頂点とする$\triangle ABC$の外心の座標を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2021年商学部第1問(2)〜共通接線と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$
(2)点Aを、放物線$C_1:y=x^2$上にある点で、第1象限($x \gt 0$かつ$y \gt 0$の範囲)
に属するものとする。そのうえで、次の条件を満たす放物線
$C_2:y=-3(x-p)^2+q$ を考える。
1.点Aは、放物線$C_2$上の点である。
2.放物線$C_2$の点Aにおける接線をlとするとき、lは放物線$C_1$の点Aにおける
接線と同一である。
点Aの座標を$A(a,a^2)$とするとき、
$p=\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}a, q=\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}a^2$
と表せる。また、直線$l$、放物線$C_2$、および直線$x=p$で囲まれた部分の
面積は$\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カキ\ \ }}a^3$ である。

2021慶應義塾大学商学部過去問
この動画を見る 

福田の数学〜大阪大学2023年理系第3問〜三角方程式の解の個数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ Pを座標平面上の点とし、点Pの座標を(a,b)とする。-π≦t≦πの範囲にある実数tのうち、曲線y=$\cos x$上の点(t, $\cos t$)における接線が点Pを通るという条件をみたすものの個数をN(P)とする。N(P)=4かつ0<a<πをみたすような点Pの存在範囲を座標平面上に図示せよ。

2023大阪大学理系過去問
この動画を見る 
PAGE TOP