【高校数学】 数B-41 空間ベクトルの内積① - 質問解決D.B.(データベース)

【高校数学】 数B-41 空間ベクトルの内積①

問題文全文(内容文):
問題1
右図の直方体$ABCD-EFGH$は,$AD=AE=1,AB=\sqrt3$である.
この直方体において,次の内積を求めよう.

①$\overrightarrow{AD}・\overrightarrow{AE}$

②$\overrightarrow{AB}・\overrightarrow{AC}$

③$\overrightarrow{DH}・\overrightarrow{CF}$

④$\overrightarrow{AD}・\overrightarrow{GE}$

⑤$\overrightarrow{a}=(1,2,1),\overrightarrow{b}=(-2,2,4)$について,
その内積となす角$\theta$を求めよう.

図は動画内参照
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: とある男が授業をしてみたますただ
問題文全文(内容文):
問題1
右図の直方体$ABCD-EFGH$は,$AD=AE=1,AB=\sqrt3$である.
この直方体において,次の内積を求めよう.

①$\overrightarrow{AD}・\overrightarrow{AE}$

②$\overrightarrow{AB}・\overrightarrow{AC}$

③$\overrightarrow{DH}・\overrightarrow{CF}$

④$\overrightarrow{AD}・\overrightarrow{GE}$

⑤$\overrightarrow{a}=(1,2,1),\overrightarrow{b}=(-2,2,4)$について,
その内積となす角$\theta$を求めよう.

図は動画内参照
投稿日:2016.01.06

<関連動画>

福田の数学・入試問題解説〜東北大学2022年文系第4問〜空間における四面体の高さと体積

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#東北大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
xyz空間内の点O(0,0,0),$A(1,\sqrt2,\sqrt3),B(-\sqrt3,0,1),C(\sqrt6,-\sqrt3,\sqrt2)$
を頂点とする四面体OABCを考える。3点OABを含む平面からの距離が1の点
のうち、点Oに最も近く、x座標が正のものをHとする。
(1)Hの座標を求めよ。
(2)3点OABを含む平面と点Cの距離を求めよ。
(3)四面体OABCの体積を求めよ。

2022東北大学文系過去問
この動画を見る 

線形代数:部分空間の判定 #線形代数 #部分空間 #ベクトル空間

アイキャッチ画像
単元: #平面上のベクトル#空間ベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
次の集合がベクトル空間の部分空間をなすか判定せよ.

(1)$W_1=\left[\begin{pmatrix}
x \\
y \\
z
\end{pmatrix} \in IR^3 | x\neq 2y\right]$

(2)$W_2=\left[\begin{pmatrix}
x \\
y \\
z
\end{pmatrix} \in IR^3 | x+2y+3z=0 \right]$

(3)$W_3=\left[\begin{pmatrix}
x \\
y \\
z
\end{pmatrix} \in IR^3 | x+2y+3z\geqq 0 \right]$
この動画を見る 

福田の数学〜慶應義塾大学2021年看護医療学部第4問〜空間ベクトルと三角形の面積

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$ $P(0,0,-1),\ Q(0,1,-2),\ R(1,0,-2)$を頂点とする三角形の面積は$\boxed{\ \ ヘ\ \ }$である。
aを実数とし、$\overrightarrow{ v }=(a,a,3)$とする。点P',Q',R'を
$\overrightarrow{ OP' }=\overrightarrow{ OP }+\overrightarrow{ v },\ \overrightarrow{ OQ' }=\overrightarrow{ OQ }+\overrightarrow{ v },\ \overrightarrow{ OR' }=$
$\overrightarrow{ OR }+\overrightarrow{ v }$
によって定め、さらに線分$PP',QQ',RR'$が$xy$平面と交わる点を$P'',Q'',R''$とする。
このとき、$P''$の座標は$\boxed{\ \ ホ\ \ }$、$Q''$の座標は$\boxed{\ \ マ\ \ }$、$R''$の座標は$\boxed{\ \ ミ\ \ }$である。
$\triangle P''Q''R''$が正三角形になるのは$a=\boxed{\ \ ム\ \ }$のときである。
3点$P'',Q'',R''$が同一直線上にあるのは$a=\boxed{\ \ メ\ \ }$のときである。$a \gt \boxed{\ \ メ\ \ }$のとき、
$\triangle P''Q''R''$の面積を$a$で表すと$\boxed{\ \ モ\ \ }$となる。

2021慶應義塾大学看護医療学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2024年経済学部第4問〜正四面体の位置ベクトルと面積体積

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{4}}$ $p$,$q$を正の実数とし、Oを原点とする座標空間内に3点A(3,$-\sqrt 3$,0),B(3,$\sqrt 3$,0),C($p$,0,$q$)をとる。ただし、四面体OABCは1辺の長さが$2\sqrt 3$の正四面体であるとする。
(1)$p$および$q$の値を求めよ。
以下、点$\displaystyle\left(\frac{3}{2},0,\frac{q}{2}\right)$に関してO,A,B,Cと対称な点を、それぞれD,E,F,Gとする。
(2)直線DGと平面ABCとの交点Hの座標を求めよ。
(3)直線CBと平面DEGとの交点をI、直線CAと平面DFGとの交点をJとする。
四角形CJHIの面積$S$と四角錐G-CJHIの体積$V$を、それぞれ求めよ。
この動画を見る 

福田の数学〜空間における三角形の外心はどうやって求める〜杏林大学2023年医学部第2問前編〜空間ベクトルと三角形の外心

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数C
指導講師: 福田次郎
問題文全文(内容文):
点 O を原点とする座標空間に 3 点 A(-1,0,-2), B(-2,-2, -3 ), C(1, 2,- 2 )がある。
(a)ベクトル$\overrightarrow{ AB }と\overrightarrow{ AC }の内積は\overrightarrow{ AB }・\overrightarrow{ AC }=\fbox{ アイ }$であり、
$\angle ABCの外接円の半径は\sqrt{\fbox{ウエ}}$である。$\angle ABC$の外接円の中心を点 P とすると、
$\overrightarrow{ AP }=\fbox{オ}\overrightarrow{ AB }+\frac{\fbox{カ}}{\fbox{キ}}\overrightarrow{ AC }$
が成り立つ。

2023杏林大学過去問
この動画を見る 
PAGE TOP