福田の数学〜上智大学2021年TEAP利用理系第4問〜楕円と弦の中点の軌跡 - 質問解決D.B.(データベース)

福田の数学〜上智大学2021年TEAP利用理系第4問〜楕円と弦の中点の軌跡

問題文全文(内容文):
4Oを原点とする座標平面において、楕円D:x26+y22=1 上に異なる2点P1,P2
がある。P1における接線l1P2における接線l2の交点をQ(a, b)とし、線分P1P2
中点をRとする。

(1)P1の座標を(x1, y1)とするとき、l1の方程式はx1x+     y1y+    =0
と表される。

(2)直線P1P2の方程式は、a,bを用いてax+     by+    =0と表される。

(3)3点O,R,Qは一直線上にあってOR=    a2+     b2OQが成り立つ。

(4)l1l2のどちらもy軸と平行ではないとする。このとき、l1l2の傾きは
tの方程式(a2+    )t2+    abt+(b2+    )=0 の解である。

(5)l1l2が直交しながらP1,P2が動くとする。
(i)Qの軌跡の方程式を求めよ。   (ii)Rのy座標の最大値を求めよ。
(iii)Rの軌跡の概形を描け。

2021上智大学理系過去問
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#軌跡と領域#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
4Oを原点とする座標平面において、楕円D:x26+y22=1 上に異なる2点P1,P2
がある。P1における接線l1P2における接線l2の交点をQ(a, b)とし、線分P1P2
中点をRとする。

(1)P1の座標を(x1, y1)とするとき、l1の方程式はx1x+     y1y+    =0
と表される。

(2)直線P1P2の方程式は、a,bを用いてax+     by+    =0と表される。

(3)3点O,R,Qは一直線上にあってOR=    a2+     b2OQが成り立つ。

(4)l1l2のどちらもy軸と平行ではないとする。このとき、l1l2の傾きは
tの方程式(a2+    )t2+    abt+(b2+    )=0 の解である。

(5)l1l2が直交しながらP1,P2が動くとする。
(i)Qの軌跡の方程式を求めよ。   (ii)Rのy座標の最大値を求めよ。
(iii)Rの軌跡の概形を描け。

2021上智大学理系過去問
投稿日:2021.09.09

<関連動画>

福田の数学〜神戸大学2023年理系第5問〜媒介変数表示で表された曲線と面積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#微分とその応用#積分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#神戸大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
5 媒介変数表示
x=sint, y=cos(tπ6)sint (0≦tπ)
で表される曲線をCとする。以下の問いに答えよ。
(1)dxdt=0 または dydt=0 となるtの値を求めよ。
(2)Cの概形をxy平面上に描け。
(3)Cのy≦0 の部分とx軸で囲まれた図形の面積を求めよ。

2023神戸大学理系過去問
この動画を見る 

福田の数学〜九州大学2022年理系第5問〜媒介変数表示のグラフの対称性とグラフの追跡

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#数学(高校生)#九州大学#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
xy平面上の曲線Cを、媒介変数tを用いて次のように定める。x=5cost+cos5t, y=5sintsin5t (πt<π)
以下の問いに答えよ。
(1)区間0<t<π6において、dxdt<0, dydx<0であることを示せ。
(2)曲線Cの0tπ6の部分、x軸、直線y=13xで囲まれた
図形の面積を求めよ。
(3)曲線Cはx軸に関して対称であることを示せ。また、C上の点を
原点を中心として反時計回りにπ3だけ回転させた点はC上
にあることを示せ。
(4)曲線Cの概形を図示せよ。

2022九州大学理系過去問
この動画を見る 

福田のおもしろ数学152〜2つの図形の面積を同時に2等分する直線が存在する証明

アイキャッチ画像
単元: #平面上の曲線#媒介変数表示と極座標#数C
指導講師: 福田次郎
問題文全文(内容文):
次の2つの図形(※動画参照)の面積を同時に2等分する直線が存在することを証明せよ。
この動画を見る 

福田の数学〜大阪大学2022年理系第5問〜媒介変数表示のグラフで囲まれた面積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#大阪大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
座標平面において、tを媒介変数として
x=etcost+eπ, y=etsint (0tπ)
と表される曲線をCとする。曲線Cとx軸で囲まれた部分の面積を求めよ。

2022大阪大学理系過去問
この動画を見る 

数検準1級1次過去問【2020年12月】5番:極方程式

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#平面上の曲線#媒介変数表示と極座標#数学検定#数学検定準1級#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
5⃣ 極方程式
r=4sinθ+6cosθ
で表される図形を求めよ。
この動画を見る 
PAGE TOP preload imagepreload image