大学入試問題#362「頻出問題ではないでしょうか?」 福島大学 改 2014 #定積分 #極限 - 質問解決D.B.(データベース)

大学入試問題#362「頻出問題ではないでしょうか?」 福島大学 改 2014 #定積分 #極限

問題文全文(内容文):
$\displaystyle \lim_{ a \to \infty } \displaystyle \int_{-a}^{a}\displaystyle \frac{dx}{(e^x+e^{-x})^2}$

出典:2014年福島大学 入試問題
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ a \to \infty } \displaystyle \int_{-a}^{a}\displaystyle \frac{dx}{(e^x+e^{-x})^2}$

出典:2014年福島大学 入試問題
投稿日:2022.11.09

<関連動画>

【概要欄に正確な文章と説明の補足】大学入試問題#76 京都大学(2007) 数列と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$x,y$:異なる正の実数
$a_1=0$
$a_{n+1}=x a_n=s\ a_n+y^{n+1}$のとき
$\displaystyle \lim_{ n \to \infty }a_n \lt \infty$となるような$(x,y)$の範囲を図示せよ。

出典:2007年京都大学 入試問題
この動画を見る 

目で見てわかる収束の値

アイキャッチ画像
単元: #関数と極限#数列の極限#関数の極限#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\dfrac{1}{4}+\dfrac{1}{4^2}+\dfrac{1}{4^3}+\dfrac{1}{4^4}+・・・・・・+\dfrac{1}{4^n}$
これは収束する値か?

この動画を見る 

大学入試問題#593「計算ミスに気をつける」 福島大学(1987) #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#数列の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=1}^n \displaystyle \frac{n}{(2n+k)^2}log\displaystyle \frac{n+2k}{n}$

出典:1987年福島大学 入試問題
この動画を見る 

大学入試問題#122 愛知県立大学(2020) 極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a \gt 0$
$\displaystyle \lim_{ x \to \infty }\displaystyle \frac{1}{x^x}(x-a)^x$を求めよ。

出典:2020年愛知県立大学 入試問題
この動画を見る 

大学入試問題#109 大阪府立大学(2010) 無限級数

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#大阪府立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a_1=1$
$a_{n+1}=\displaystyle \frac{n}{n+5}\ a_n$のとき
$\displaystyle \sum_{n=1}^\infty\ a_n$を求めよ

出典:2010年大阪府立大学 入試問題
この動画を見る 
PAGE TOP