中学からの極限(徹底編)~全国入試問題解法 #shorts #数学 #高校入試 #動体視力 - 質問解決D.B.(データベース)

中学からの極限(徹底編)~全国入試問題解法 #shorts #数学 #高校入試 #動体視力

問題文全文(内容文):
$ \displaystyle \lim_{(x,y)\to (0,0)}\dfrac{x^2-y^2}{x^2+y^2}$
次の関数の極限を調べよ.
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \displaystyle \lim_{(x,y)\to (0,0)}\dfrac{x^2-y^2}{x^2+y^2}$
次の関数の極限を調べよ.
投稿日:2024.01.07

<関連動画>

林俊介 語りかける東大数学

アイキャッチ画像
単元: #対数関数#関数と極限
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)$n\in Z+$

$g(x):=\begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{\cos(\pi x)+1}{2} (\vert x \vert \leq 1) \\
0 (\vert x \vert \gt 1)
\end{array}
\right.
\end{eqnarray}$

$f(x):$連続であり,$p,q \in R$

$\vert x\vert \leq \dfrac{1}{n}$でつねに$p\leq f(x)\leq q$
$p\leq n\dfrac{\displaystyle \int_{-1}^{1} g(nx) f(x) dx\leq q}{I}$を示せ.

(2)$h(x)=:\begin{eqnarray}
\left\{
\begin{array}{l}
-\dfrac{\pi}{2}\sin(\pi x) (\vert x\vert \leq 1) \\
0 (\vert x\vert \gt 1)
\end{array}
\right.
\end{eqnarray}$

次の極限を求めよ.

$\displaystyle \lim_{n\to\infty} n^2\displaystyle \int_{-1}^{1} h(nx)\log(1+e^{x+1})dx $

(1)$g(x)=\begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{\cos(\pi x)+1}{2} (\vert x\vert \leq 1) \\
0 (\vert x\vert \gt 1)
\end{array}
\right.
\end{eqnarray}$

$p\leq n \displaystyle \int_{-1}^{1} g(nx) f(x)dx \leq q$

2015東大過去問
この動画を見る 

大学入試問題#459「構想力が問われる問題」 早稲田大学(2017) #連続関数

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$C$:定数 $-1 \lt C \lt 1$
すべての実数$x$に対して
$f(x)+f(cx)=x^2$を満たす連続関数$f(x)$を求めよ

出典:2017年早稲田大学 入試問題
この動画を見る 

古畑任三郎/刑事コロンボ問題

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$\displaystyle \lim_{x\to \infty}\dfrac{[2x^2-x+3]}{x^2}$
この動画を見る 

中学からの極限(発展編)~全国入試問題解法 #shorts #数学 #極限 #頭の体操

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \displaystyle \lim_{x \to 1}\dfrac{ax-1}{x-a}$を求めよ.
この動画を見る 

福田のわかった数学〜高校3年生理系016〜極限(16)関数の極限、無理関数の極限

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(16)
$\lim_{x \to 1}\displaystyle \frac{\sqrt{x+8}-3}{\sqrt{x+3}-2}$ を求めよ。 
この動画を見る 
PAGE TOP