【数学】横浜国立大2018年度(理系前期)第1問の解説 - 質問解決D.B.(データベース)

【数学】横浜国立大2018年度(理系前期)第1問の解説

問題文全文(内容文):
横浜国立大(理系)2018年度前期入試
第1問
(1) 定積分$\displaystyle \int_{0}^{\frac{\pi}{3}}\dfrac{x}{\cos(x)^2} dx$を求めよ。
(2) $\dfrac{-\pi}{2}\lt x\lt \dfrac{\pi}{2}$で定義された関数f(x)が
   $f(x)\cos(x)^2 =\pi-\dfrac{x}{\log2}\displaystyle \int_{0}^{\frac{\pi}{3}f(t)dt$
をみたすとき、f(x)を求めよ。
チャプター:

0:00 オープニング
0:33 (1)の解説開始
2:44 (2)の解説開始

単元: #学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
横浜国立大(理系)2018年度前期入試
第1問
(1) 定積分$\displaystyle \int_{0}^{\frac{\pi}{3}}\dfrac{x}{\cos(x)^2} dx$を求めよ。
(2) $\dfrac{-\pi}{2}\lt x\lt \dfrac{\pi}{2}$で定義された関数f(x)が
   $f(x)\cos(x)^2 =\pi-\dfrac{x}{\log2}\displaystyle \int_{0}^{\frac{\pi}{3}f(t)dt$
をみたすとき、f(x)を求めよ。
投稿日:2022.02.20

<関連動画>

法政大・お茶の水女子大 高次方程式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#お茶の水女子大学#法政大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha^6+\alpha^5-9\alpha^4-10\alpha^3-9\alpha^2+\alpha+1=0$
6つの解を求めよ

$x^4-6x^3-x^2+18x+9=0$
4つの解を求めよ

出典:法政大学 お茶の水女子大学 過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題070〜筑波大学2017年度理系第5問〜格子点の個数とガウス記号と区分求積

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#関数の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{5}}$ xy平面において、x座標とy座標がともに整数である点を格子点という。また、実数aに対して、a以下の最大の整数を[a]で表す。記号[ ]をガウス記号という。
以下の問いではNを自然数とする。
(1) nを0 $\leqq$ n $\leqq$ Nを満たす整数とする。点(n, 0)と点(n, N$\sin\left(\displaystyle\frac{\pi x}{2N}\right)$)を結ぶ線分上にある格子点の個数をガウス記号を用いて表せ。
(2) 直線y=xと、x軸、および直線x=Nで囲まれた領域(境界を含む)にある格子点の個数をA(N)とおく。このときA(N)を求めよ。
(3) 曲線y=N$\sin\left(\displaystyle\frac{\pi x}{2N}\right)$(0 $\leqq$ x $\leqq$ N)と、x軸、および直線x=Nで囲まれた領域(境界を含む)にある格子点の個数をB(N)とおく。(2)のA(N)に対して$\displaystyle\lim_{N \to \infty}\frac{B(N)}{A(N)}$を求めよ。

2017筑波大学理系過去問
この動画を見る 

福田の数学〜北海道大学2025文系第4問〜関数方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

関数$f(x)$は、

すべての実数$x$およびすべての整数$n$について

$f(nx)={f(x)}^n$を満たし、

さらに$f(1)=2$を満たすとする。

ただし、$f(x)$のとりうる値は$0$でない実数とする。

(1)$f(n) \leqq 100$となるような最大の整数$n$を求めよ。

(2)すべての実数$x$について

$f(x)\gt 0$であることを証明せよ。

(3)$f(0.25)$を求めよ。

(4)$a$が有理数のとき、$f(a)$を$a$で表せ。

$2025$年北海道大学文系過去問題
この動画を見る 

福田の数学〜3乗根のおおよその値を知る方法〜早稲田大学2023年社会科学部第3問〜3乗根と2重根号を簡単にする

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#指数関数と対数関数#恒等式・等式・不等式の証明#指数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a=\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}$とする。
(1)$a^3$を$a$の1次式で表せ。
(2)$a$は整数であることを示せ。
(3)$b=a=\sqrt[3]{5\sqrt{2}+7}+\sqrt[3]{5\sqrt{2}-7}$
を超えない最大の整数を求めよ。

2023早稲田大学社会科学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2021年看護医療学部第2問(2)〜外接する円に接する直線

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$(2)円$x^2+y^2=1$をCと表す。$p \gt 1$とし、点P(0,p)を通るCの2つの接線
を$l_1,l_2$とする。$l_1,l_2$の方程式は

$y=\boxed{\ \ タ\ \ }, y=\boxed{\ \ チ\ \ }$
であり、$l_1,l_2$が直交するのは$p=\boxed{\ \ ツ\ \ }$のときである。
$p=\boxed{\ \ ツ\ \ }$のとき、$l_1,l_2$を接線に持ち、かつCに外接する円の中で中心が
y軸上にある2つの円の半径は$\boxed{\ \ テ\ \ }$および$\boxed{\ \ ト\ \ }$である。

2021慶應義塾大学看護医療学部過去問
この動画を見る 
PAGE TOP