問題文全文(内容文):
横浜国立大(理系)2018年度前期入試
第1問
(1) 定積分$\displaystyle \int_{0}^{\frac{\pi}{3}}\dfrac{x}{\cos(x)^2} dx$を求めよ。
(2) $\dfrac{-\pi}{2}\lt x\lt \dfrac{\pi}{2}$で定義された関数f(x)が
$f(x)\cos(x)^2 =\pi-\dfrac{x}{\log2}\displaystyle \int_{0}^{\frac{\pi}{3}f(t)dt$
をみたすとき、f(x)を求めよ。
横浜国立大(理系)2018年度前期入試
第1問
(1) 定積分$\displaystyle \int_{0}^{\frac{\pi}{3}}\dfrac{x}{\cos(x)^2} dx$を求めよ。
(2) $\dfrac{-\pi}{2}\lt x\lt \dfrac{\pi}{2}$で定義された関数f(x)が
$f(x)\cos(x)^2 =\pi-\dfrac{x}{\log2}\displaystyle \int_{0}^{\frac{\pi}{3}f(t)dt$
をみたすとき、f(x)を求めよ。
チャプター:
0:00 オープニング
0:33 (1)の解説開始
2:44 (2)の解説開始
単元:
#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
横浜国立大(理系)2018年度前期入試
第1問
(1) 定積分$\displaystyle \int_{0}^{\frac{\pi}{3}}\dfrac{x}{\cos(x)^2} dx$を求めよ。
(2) $\dfrac{-\pi}{2}\lt x\lt \dfrac{\pi}{2}$で定義された関数f(x)が
$f(x)\cos(x)^2 =\pi-\dfrac{x}{\log2}\displaystyle \int_{0}^{\frac{\pi}{3}f(t)dt$
をみたすとき、f(x)を求めよ。
横浜国立大(理系)2018年度前期入試
第1問
(1) 定積分$\displaystyle \int_{0}^{\frac{\pi}{3}}\dfrac{x}{\cos(x)^2} dx$を求めよ。
(2) $\dfrac{-\pi}{2}\lt x\lt \dfrac{\pi}{2}$で定義された関数f(x)が
$f(x)\cos(x)^2 =\pi-\dfrac{x}{\log2}\displaystyle \int_{0}^{\frac{\pi}{3}f(t)dt$
をみたすとき、f(x)を求めよ。
投稿日:2022.02.20