【類題ザクザク⁈まず3分で本質をつかもう。】文章題:法政大学国際高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

【類題ザクザク⁈まず3分で本質をつかもう。】文章題:法政大学国際高等学校~全国入試問題解法

問題文全文(内容文):
入試問題 法政大学国際高等学校

1辺の長さが20cmの正方形の紙の4隅から 同じ大きさの正方形を 4つ切り取って、ふたのない箱を作る。

この箱の底面積と側面積が等しいとき
      ↓
切り取る正方形の 1辺の長さを求めよ。
単元: #数学(中学生)#中3数学#2次方程式#高校入試過去問(数学)#法政大学国際高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 法政大学国際高等学校

1辺の長さが20cmの正方形の紙の4隅から 同じ大きさの正方形を 4つ切り取って、ふたのない箱を作る。

この箱の底面積と側面積が等しいとき
      ↓
切り取る正方形の 1辺の長さを求めよ。
投稿日:2021.08.28

<関連動画>

因数分解 A 中大横浜 2021

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$a^2(x-1)-x+1$を因数分解せよ。

中央大学附属横浜高等学校
この動画を見る 

中学生向け計算問題 因数分解 暇つぶし

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師: 鈴木貫太郎
問題文全文(内容文):
因数分解
$\sqrt{ 900・901・902・903+1 }$を計算せよ

$(x+1)(x+2)(x+3)(x+4)-3$
この動画を見る 

【中学数学】三平方の定理:正四面体の頂点から底面に引いた垂線は、底面の正三角形の重心を通る。一辺の長さがaの正四面体OABCについて、Oから底面ABCに引いた垂線をOHとするとき(続きは概要欄)

アイキャッチ画像
単元: #数学(中学生)#中3数学#三平方の定理
指導講師: 理数個別チャンネル
問題文全文(内容文):
正四面体の頂点から底面に引いた垂線は、底面の正三角形の重心を通る。一辺の長さがaの正四面体OABCについて、Oから底面ABCに引いた垂線をOHとするとき、次の問いに答えよう。
(1)線分AHの長さを求めよう。
(2)正四面体OABCの高さOHを求めよう。
(3)正四面体OABCの体積Vを求めよう。
この動画を見る 

福田の数学〜上智大学2022年理工学部第3問〜複素数平面上の点列と三角形の相似

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#相似な図形#数列#漸化式#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
複素数からなる数列${z_n}$を、次の条件で定める。
$z_1=0,\ \ \ z_{n+1}=(1+i)z_n-i \ \ \ (i=1,2,3, \ \ ...)$
正の整数nに対し、z_nに対応する負素数平面上の点をA_nとおく。
(1)$z_2=\boxed{ツ }+\boxed{ツ }\ i, \ \ \ z_3=\boxed{ト}+$
$\boxed{ナ}\ i,\ \ \ z_4=\boxed{二}+\boxed{ヌ}\ i $である。
(2)$r \gt 0,\ 0 \leqq θ \lt 2\pi$ を用いて、$1+i=r(\cos θ+i\sin θ)$のように$1+i$を極形式で
表すとき、$r=\sqrt{\boxed{ネ}},\ θ=\frac{\boxed{ノ }}{\boxed{ハ}}\pi$である。
(3)すべての正の整数nに対する$\triangle PA_nA_{n+1}$が互いに相似になる点Pに対応する
複素数は、$\boxed{ヒ}+\boxed{フ }\ i$である。
(4)$|z_n| \gt 1000$となる最小のnは$n=\boxed{へ}$である。
(5)$A_{2022+k}$が実軸上にある最小の正の整数kは$k=\boxed{ホ}$である。

2022上智大学理工学部過去問
この動画を見る 

和が分かればいい 筑波大学附属

アイキャッチ画像
単元: #数学(中学生)#中3数学#円#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$\stackrel{\huge\frown}{AB} + \stackrel{\huge\frown}{CD} = ?$
*図は動画内参照

筑波大学附属高等学校
この動画を見る 
PAGE TOP