【数Ⅰ】2次方程式の解の配置問題【問題文を図にしよう】 - 質問解決D.B.(データベース)

【数Ⅰ】2次方程式の解の配置問題【問題文を図にしよう】

問題文全文(内容文):
$ 2次方程式x^2-2ax+a+2=0の異なる2つの実数解が以下の条件を満たすとき定数aの値の範囲を求めよ.
(1)ともに1より大きい.
(2)一方が1より小さく,他方が1より大きい.$
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$ 2次方程式x^2-2ax+a+2=0の異なる2つの実数解が以下の条件を満たすとき定数aの値の範囲を求めよ.
(1)ともに1より大きい.
(2)一方が1より小さく,他方が1より大きい.$
投稿日:2021.09.26

<関連動画>

3通りで解説!分母の有理化どうする? 高知中央 (高知)

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt 6 + \frac{18}{\sqrt 6}$
高知中央高等学校
この動画を見る 

福田の数学〜京都大学2025理系第4問〜平面が定点を通過する条件

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

座標空間の$4$点$O,A,B,C$は同一平面上にないとする。

$s,t,u$は$0$でない実数とする。

直線$OA$上の点$L$、

直線$OB$上の点$M$、直線$OC$上の点$N$を

$\overrightarrow{ OL }=s\overrightarrow{ OA },\overrightarrow{ OM }=t\overrightarrow{ OB },\overrightarrow{ ON }=u\overrightarrow{ OC }$が

成り立つようにとる。

(1)$s,t,u$が$\dfrac{1}{s}+\dfrac{2}{t}+\dfrac{3}{u}=4$を満たす範囲で

あらゆる値をとるとき、

$3$点$L,M,N$の定める平面$LMN$は、

$s,t,u$の値に無関係な一定の点$P$を通ることを示せ。

さらに、そのような点$P$はただ一つに定まることを示せ。

$2025$年京都大学理系過去問題
この動画を見る 

気付けば一瞬!!角の和

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
x+y=?
*図は動画内参照
この動画を見る 

目の前にあるものをいきなり食べてはいけません。

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
a= 9999のとき
$\frac{4a^3 - a }{(2a+1)(6a-3)} = ?$
この動画を見る 

#自治医科大学2024#式変形_21#元高校教員

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#式の計算(整式・展開・因数分解)#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#数学(高校生)#自治医科大学
指導講師: ますただ
問題文全文(内容文):
$x^{\frac{1}{3}}+x^{-\frac{1}{3}}$のとき
$\displaystyle \frac{x+x^{-1}}{2}$の値を求めよ。

出典:自治医科大学 式変形問題
この動画を見る 
PAGE TOP