福田の数学〜東京大学2025文系第4問〜放物線で囲まれた面積の最大値 - 質問解決D.B.(データベース)

福田の数学〜東京大学2025文系第4問〜放物線で囲まれた面積の最大値

問題文全文(内容文):

$\boxed{4}$

$a$は実数とする。

座標平面において、次の連立不等式の表す領域の

面積を$S(a)$とする。

$\begin{eqnarray}
\left\{
\begin{array}{l}
y \leqq -\dfrac{1}{2}x^2+2 \\
y \geqq \vert x^2+a \vert \\\
-1 \leqq x \leqq 1
\end{array}
\right.
\end{eqnarray}$

$a$が$ 2\leqq a \leqq 2$の範囲を動くとき、

$S(a)$の最大値を求めよ。

$2025$年東京大学文系過去問
単元: #連立方程式#数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

$a$は実数とする。

座標平面において、次の連立不等式の表す領域の

面積を$S(a)$とする。

$\begin{eqnarray}
\left\{
\begin{array}{l}
y \leqq -\dfrac{1}{2}x^2+2 \\
y \geqq \vert x^2+a \vert \\\
-1 \leqq x \leqq 1
\end{array}
\right.
\end{eqnarray}$

$a$が$ 2\leqq a \leqq 2$の範囲を動くとき、

$S(a)$の最大値を求めよ。

$2025$年東京大学文系過去問
投稿日:2025.03.06

<関連動画>

【高校受験対策】数学-規則性6

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
図1のような、縦$acm$、横$bcm$の長方形の紙がある。
この長方形の紙に対して次のような【操作】を行う。ただし$a$、$b$は正の整数であり、$a \lt b$とする。

【操作】
長方形の紙から短い方の辺を1辺とする正方形を切り取る。
残った四角形が正方形でない場合には、その四角形からさらに同様の方法で正方形を切り取り、残った四角形が正方形になるまで繰り返す。

例えば、図2のように、$a$=3、$ b$=4の長方形の紙に対して【操作】を行うと、1辺3cmの正方形の紙が1枚、1辺1cmの正方形の紙が3枚、全部で4枚の正方形ができる。
このとき次の問1、間2、間3、間4に答えなさい。


問1
$a$=4、$b$=6の長方形の紙に対して【操作】を行ったとき、できた正方形のうち最も小さい正方形の 1辺の長さを求めなさい。

問2
$n$を正の整数とする。$a=n$、$b=3n+1$の長方形の紙に対して【操作】を行ったとき、正方形は全部で何枚できるか。$n$を用いて表しなさい。

問3
ある長方形の紙に対して【操作】を行ったところ、3種類の大きさの異なる正方形が全部で4枚できた。
これらの正方形は、1辺の長さが長い順に、12cmの正方形が1枚、$x$cmの正方形が1枚、$y$cmの正方形が2枚であった。
このとき、$x$、$y$の連立方程式をつくり、$x$、$y$の値を求めなさい。ただし、 途中の計算も書くこと。

問4
$b=56$の長方形の紙に対して【操作】を行ったところ、3種類の大きさの異なる正方形が全で5枚できた。このとき考えられる$a$の値をすべて求めなさい。
この動画を見る 

【高校受験対策】数学-死守15

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#空間図形#確率#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問に答えなさい.

①$6x-x$を計算しなさい.

②$6+(-2)\times 4$を計算しなさい.

③$\sqrt{45}-2\sqrt5$を計算しなさい.

④$x=18$のとき,
$x^2-6x-16$の値を求めなさい.

⑤2次方程式$3x^2+7x+1=0$を解きなさい.

⑥連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
3x+2y=18 \\
x+y=7
\end{array}
\right.
\end{eqnarray}$を解きなさい.

⑦関数$y=\dfrac{1}{2}x^2$の値が1から5まで増加するときの変化の割合が,
一次関数$y = ax + 2$ の変化の割合と等しくなりました.
$a$の値を求めなさい.

⑧図1のような円錐の形のチョコレートがあります.
このチョコレートの8分の1の量をもらえることになり,
底面と平行に切って頂点のあるほうをもらうことにしました.
母線の長さを$8cm$とすると,
頂点から母線にそって何$cm$のところを切ればよいかを求めなさい.

⑨図2で,$\angle A=48$の$△ABC$があり,$\angle B,\angle C$の
二等分線をそれぞれかいたときの交点を$D$とします.
このとき,$\angle BDC$の大きさを求めなさい.

➉図3のように,円周上に18個の点が等間隔に並んでおり,
そのうちの点を$P$とします.
1個の黒石を点$P$上に置き,この黒石を,
1から6までの目が出るさいころを1回投げるごとに,
出た目の数だけ円周上の点上を順に動かします.
動かし方は,偶数の目が出たときは右回りに,
奇数の目が出たときは左回りに動かすものとします.
さいころを3回投げたとき,黒石が点$P$に戻っている確率を求めなさい.

図は動画内を参照
この動画を見る 

2乗を含む連立方程式

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 数学を数楽に
問題文全文(内容文):
連立方程式を解け
$
\begin{eqnarray}
\left\{
\begin{array}{l}
x^2 - 2y = 8 \\
y^2 - 2x = 8
\end{array}
\right.
\end{eqnarray}
$
群馬大学
この動画を見る 

【ケントウする点は…!】連立方程式:大阪星光学院高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ x,y $の連立方程式であり,$ a,b $は正の数である.
$\begin{eqnarray}
\left\{
\begin{array}{l}
ax-y=4 \\
x+by=7
\end{array}
\right.
\end{eqnarray}$
の解を$ a $と$ b $を用いて表すと$ x=\Box,y=\Box $である.

大阪星光学院高校過去問

$ x,y $の連立方程式であり,$ a,b $は正の数である.
この動画を見る 

【高校受験対策】数学-死守13

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#確率#円#立体図形#立体図形その他#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問いに答えなさい.

①$3-(-2)$を計算しなさい.

②$(-3)^2+5\times (-1)$を計算しなさい.

③$(2x^2-5x)-(3x^2-2x)$を計算しなさい.

④$(-4a^2)\times 18b \div 9ab$を計算しなさい.

⑤$(\sqrt3 + 1)^2$を計算しなさい.

⑥$x$に$-3$をかけて$5$をひいた数は$7$より小さい.
この数量の関係を不等式で表しなさい.

⑦次の連立方程式を解きなさい.
$3x+4y=x+y=2$

⑧2次方程式$(x-2)^2=81$を解きなさい.

⑨右の図で,$y$が$x$に比例するとき,
(ア)にあてはまる数を求めなさい.

⑩$1,2,3,4$の数字が書かれた4枚のカードが袋の中に入っている.
このカードを2枚同時に取り出すとき,
袋の中に残っているカードに書かれている数の和が,
取り出したカードに書かれている数の和より大きくなる確率を求めなさい.

⑪右上の図1は,底面の半径が$6cm$,母線の長さが$30cm$の円すいである.
この円すいの展開図をかいたとき,側面になるおうぎ形の中心角を求めなさい.

⑫右の図2の平行四辺形$ABCD$で,
$AB,BC$上にそれぞれ点$E,F$をとる.
$AC /\!/ EF$のとき,$△ACE$と面積が等しい三角形を3つ書きなさい.

図は動画内を参照
この動画を見る 
PAGE TOP