福田のわかった数学〜高校2年生022〜円の外部から引いた接線の求め方 - 質問解決D.B.(データベース)

福田のわかった数学〜高校2年生022〜円の外部から引いた接線の求め方

問題文全文(内容文):
数学$\textrm{II}$ 円の方程式
円$C:x^2+y^2=4$ の接線で$(2,3)$を通るものと
そのときの接点を次の3通りの方法で求めよ。
(1)接線の公式$x_1x+y_1=r^2$ を利用
(2)点と直線の距離の公式を利用
(3)判別式を利用
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 円の方程式
円$C:x^2+y^2=4$ の接線で$(2,3)$を通るものと
そのときの接点を次の3通りの方法で求めよ。
(1)接線の公式$x_1x+y_1=r^2$ を利用
(2)点と直線の距離の公式を利用
(3)判別式を利用
投稿日:2021.05.22

<関連動画>

福田の数学〜上智大学2021年TEAP利用文系第4問(2)〜線形計画法

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#円と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$(2)野菜Aには1個あたり栄養素$x_1$が8g、栄養素$x_2$が4g、栄養素$x_3$が2g
含まれ、野菜Bには1個あたり栄養素$x_1$が4g、栄養素$x_2$が6g、栄養素$x_3$
が6g含まれている。これら2種類の野菜をそれぞれ何個かずつ選んで
ミックスし野菜ジュースを作る。選んだ野菜は丸ごと全て用い、栄養素$x_1$
を42g以上、栄養素$x_2$を48g以上、栄養素$x_3$を30g以上含まれるように
したい。野菜Aの個数と野菜Bの個数の和をなるべく小さくしてジュース
を作るとき、野菜Aの個数a、野菜Bの個数bの組(a,\ b)は

$(a,\ b)=(\boxed{\ \ ヘ\ \ },\ \boxed{\ \ ホ\ \ }), (\boxed{\ \ マ\ \ },\ \boxed{\ \ ミ\ \ })$

である。ただし、 $\boxed{\ \ ヘ\ \ } \lt \boxed{\ \ マ\ \ }$とする。

2021上智大学文系過去問
この動画を見る 

【数Ⅱ】図形と方程式:円と直線! aを実数とする。円x²+y²-4x-8y+15=0と直線y=ax+1が 異なる2点A,Bで交わっている。(3)弦ABの長さが2になるときのaの値を求めなさい。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#大分大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
円$x^2+y^2-4x-8y+15=0$と直線$y=ax+1$が 異なる2点A,Bで交わっている。(3)弦ABの長さが2になるときのaの値を求めなさい。
この動画を見る 

超簡単な方程式

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.$ 0\leqq x\leqq 2\pi$
$25^{\cos x}-6・5^{\cos x-\frac{1}{2}}+1=0$
この動画を見る 

福田のおもしろ数学116〜円の内部の点(a,b)に対してax+by=r^2はどんな直線を表しているか

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
円$x^2$+$y^2$=$r^2$ の内部の点($a$,$b$)に対して直線$ax$+$by$=$r^2$ はどんな直線か。ただし、($a$,$b$)$\ne$(0,0)とする。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題099〜早稲田大学2020年度社会科学部第3問〜複数の円の位置関係

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 座標平面上の5つの点$P_1$($-\sqrt 5$, 0), $P_2$($-\frac{\sqrt 5}{2}$, $-\frac{\sqrt 3}{2}$), $P_3$(0, 0), $P_4$($\frac{\sqrt 5}{2}$, $-\frac{\sqrt 3}{2}$), $P_5$($\sqrt 5$, 0)をそれぞれ中心とする半径1の円を$C_1$, $C_2$, $C_3$, $C_4$, $C_5$とする。次の問に答えよ。
(1)1つ以上の円に囲まれる領域の面積を求めよ。
(2)2つ以上の円と接する直線の本数を求めよ。
(3)3つ以上の円と外接する円の半径をすべて求めよ。

2020早稲田大学社会科学部過去問
この動画を見る 
PAGE TOP