縦の筆算厳禁 整数問題 ピタゴラス数 - 質問解決D.B.(データベース)

縦の筆算厳禁 整数問題 ピタゴラス数

問題文全文(内容文):
動画内の図を見て$a,b$を求めよ
$a,b$自然数
単元: #数A#整数の性質#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
動画内の図を見て$a,b$を求めよ
$a,b$自然数
投稿日:2019.09.04

<関連動画>

福田のおもしろ数学507〜三角形の面がm個ありどの頂点にも4本の辺が集まる多面体

アイキャッチ画像
単元: #数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

ある凸多面体において、

三角形の面が$m$枚あり、

(他の形の面も含まれている可能性がある)

すべての頂点にはちょうど$4$枚の辺が集まって

いるとする。

このとき、$m$の最小値を求めて下さい。
    
この動画を見る 

福田の数学〜神戸大学2023年理系第4問〜平面に下ろした垂線ベクトルと四面体の体積

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#神戸大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 四面体OABCがあり、辺OA, OB, OCの長さはそれぞれ$\sqrt{13}$, 5, 5である。
$\overrightarrow{OA}$・$\overrightarrow{OB}$=$\overrightarrow{OA}$・$\overrightarrow{OC}$=1, $\overrightarrow{OB}$・$\overrightarrow{OC}$=-11 とする。頂点Oから$\triangle$ABCを含む平面に下ろした垂線とその平面の交点をHとする。以下の問いに答えよ。
(1)線分ABの長さを求めよ。
(2)実数$s$, $t$を$\overrightarrow{OH}$=$\overrightarrow{OA}$+$s\overrightarrow{AB}$+$t\overrightarrow{AC}$ を満たすように定めるとき、$s$と$t$の値を求めよ。
(3)四面体OABCの体積を求めよ。

2023神戸大学理系過去問
この動画を見る 

ナイスな不定二次方程式

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
x,yは自然数とする.
$x^2(2-y)+y^2(2-x)=-12$を満たす$(x,y)$をすべて求めよ.
この動画を見る 

放物線と円 気づけば一瞬! 近江高校

アイキャッチ画像
単元: #数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
円の中心の座標は?
*図は動画内参照

近江高等学校
この動画を見る 

福田のわかった数学〜高校1年生080〜場合の数(19)道順(5)

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 場合の数(17) 道順(5)
図(※動画参照)のように立方体ABCD-EFGHの各面が3×3の正方形となるような
碁盤の目状に区切られた図形がある。点Aから点Gまで辺上を通って最短経路で行く
方法は何通りあるか。
この動画を見る 
PAGE TOP